Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 12(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38255245

ABSTRACT

As cell culture supplements, human platelet lysate (PL) and human platelet lysate serum (PLS) are alternatives to fetal bovine serum (FBS) due to FBS-related issues such as ethical concerns, variability between batches, and the possible introduction of xenogenic contaminants. This study compared the composition and efficacy of PL, PLS, and FBS as supplements in the culture and cryopreservation of human dermal fibroblasts, Wharton's jelly-derived mesenchymal stem cells (WJ-MCS), and adipose tissue (AdMSC). Biochemical components, some growth factors, and cytokines present in each of them were analyzed; in addition, the cells were cultured in media supplemented with 5% PL, 5% PLS, and 10% FBS and exposed to different freezing and thawing solutions with the supplements under study. Biochemical parameters were found to be similar in PL and PLS compared to FBS, with some differences in fibrinogen and calcium concentration. Growth factors and cytokines were higher in PL and PLS compared to FBS. Cell proliferation and morphology showed no significant differences between the three culture media. Regarding the cryopreservation and thawing of cells, better results were obtained with PLS and FBS. In conclusion, PL and PLS are an excellent choice to replace the standard supplement of animal origin (FBS) in the media used for the culture and cryopreservation of fibroblasts, WJ-MSC, and AdMSC.

2.
Materials (Basel) ; 17(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38203987

ABSTRACT

The aim of this study was to compare the viscoelastic properties of a decellularized mesh from the porcine esophagus, prepared by our group, with two commercial acellular tissues derived from porcine small intestine submucosa and bovine pericardium for use in medical devices. The tissues' viscoelastic properties were characterized by creep tests in tension, applying the load in the direction of the fibers or the transverse direction, and also by dynamic-shear mechanical tests between parallel plates or in tension at frequencies between 0.1 and 35 Hz. All the tests were performed in triplicate at a constant temperature of 37 °C immersed in distilled water. The tissues' surface and cross-sectional microstructure were observed by scanning electron microscopy (SEM) to characterize the orientation of the fibers. The matrices of the porcine esophagus present an elastic modulus in the order of 60 MPa when loaded in the longitudinal direction while those of the porcine intestine submucosa and bovine pericardium have an elastic modulus below 5 MPa. Nevertheless, the shear modulus of bovine pericardium nearly triplicates that of the esophageal matrix. The viscoelasticity of decellularized esophageal mucosa is characterized by a fast change in the creep compliance with time. The slope of the creep curve in the double logarithmic plot is twice that of the control samples. These results are consistent with the microstructure observed under electron microscopy regarding the orientation of the fibers that make up the matrices.

SELECTION OF CITATIONS
SEARCH DETAIL
...