Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 11(2)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35215092

ABSTRACT

Climate change is causing detrimental changes in living organisms, including pathogens. This review aimed to determine how climate change has impacted livestock system management, and consequently, what factors influenced the gastrointestinal nematodes epidemiology in small ruminants under tropical conditions. The latter is orientated to find out the possible solutions responding to climate change adverse effects. Climate factors that affect the patterns of transmission of gastrointestinal parasites of domesticated ruminants are reviewed. Climate change has modified the behavior of several animal species, including parasites. For this reason, new control methods are required for controlling parasitic infections in livestock animals. After a pertinent literature analysis, conclusions and perspectives of control are given.

2.
J Anim Sci ; 97(11): 4428-4444, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31541548

ABSTRACT

The aim of this study was to identify for the first time single nucleotide polymorphisms (SNPs) associated with Haemonchus contortus resistance in Florida Native sheep, using a targeted sequencing approach. One hundred and fifty-three lambs were evaluated in this study. At the start of the trial, phenotypic records for fecal egg count (FEC), FAMACHA score, body condition score (BCS), and weight were recorded and deworming of sheep with levamisole (18 mg/kg of body weight) was performed. Ten days post-deworming (baseline) and 28 d post-baseline, a full hematogram of each sheep was obtained and FEC, FAMACHA score, BCS, and weight were assessed. Average daily gain was calculated at the end of the trial. Out of 153 animals, 100 sheep were selected for genotyping using a targeted sequencing approach. Targeted sequencing panel included 100 candidate genes for immune response against H. contortus. SNPs were discarded if call rate <95% and minor allele frequency ≤0.05. A mixed model was used to analyze the response variables and included the identity by state matrix to control for population structure. A contemporary group (age, group, and sex) was included as fixed effect. Bonferroni correction was used to control for multiple testing. Eighteen SNPs on chromosomes 1, 2, 3, 4, 6, 7, 11, 15, 18, 20, 24, and 26 were significant for different traits. Our results suggest that loci related to Th17, Treg, and Th2 responses play an important role in the expression of resistant phenotypes. Several genes including ITGA4, MUC15, TLR3, PCDH7, CFI, CXCL10, TNF, CCL26, STAT3, GPX2, IL2RB, and STAT6 were identified as potential markers for resistance to natural H. contortus exposure. This is the first study that evaluates potential genetic markers for H. contortus resistance in Florida Native sheep.


Subject(s)
Disease Resistance/genetics , Genome-Wide Association Study/veterinary , Haemonchiasis/veterinary , Haemonchus/immunology , Sheep Diseases/immunology , Animals , Body Weight , Feces/parasitology , Female , Florida , Genotyping Techniques/veterinary , Haemonchiasis/immunology , Haemonchiasis/parasitology , Male , Parasite Egg Count/veterinary , Phenotype , Sheep , Sheep Diseases/parasitology , T-Lymphocytes, Regulatory/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...