Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Hazard Mater ; 463: 132836, 2024 02 05.
Article in English | MEDLINE | ID: mdl-37931339

ABSTRACT

Microorganisms from L. terrestris gut previously exposed to different types of plastic (PET, LDPE, LLDPE, and PS) were studied to be used as probiotics of earthworms in plastic-contaminated soils (LDPE, LLDPE and recycled mulching film) at mesocosm-scale trials. The most abundant morphotypes with enzymatic capacities of interest were identified. Pseudomonas alkylphenolica (PL4) and Pseudomonas putida (PL5) strains were selected to be used as inoculants using Morus alba leaves as carriers to strengthen the intestinal microbiota of earthworms. Culture (selective cetrimide agar medium) and molecular (qPCR) techniques were used to trace the presence of the inoculum in the intestine of the earthworms. Additionally, a metataxonomic analysis was carried out to study the biodiversity and functionality of the earthworm microbiome, and their measure of survival and weight. Probiotics improved the survival rates of earthworms exposed to plastics, which also increased the abundance of microbial groups of interest in plastic bioremediation tasks.


Subject(s)
Gastrointestinal Microbiome , Oligochaeta , Animals , Polyethylene , Biodiversity , Soil
2.
Front Microbiol ; 14: 1143769, 2023.
Article in English | MEDLINE | ID: mdl-37113240

ABSTRACT

The increase in the production of highly recalcitrant plastic materials, and their accumulation in ecosystems, generates the need to investigate new sustainable strategies to reduce this type of pollution. Based on recent works, the use of microbial consortia could contribute to improving plastic biodegradation performance. This work deals with the selection and characterization of plastic-degrading microbial consortia using a sequential and induced enrichment technique from artificially contaminated microcosms. The microcosm consisted of a soil sample in which LLDPE (linear low-density polyethylene) was buried. Consortia were obtained from the initial sample by sequential enrichment in a culture medium with LLDPE-type plastic material (in film or powder format) as the sole carbon source. Enrichment cultures were incubated for 105 days with monthly transfer to fresh medium. The abundance and diversity of total bacteria and fungi were monitored. Like LLDPE, lignin is a very complex polymer, so its biodegradation is closely linked to that of some recalcitrant plastics. For this reason, counting of ligninolytic microorganisms from the different enrichments was also performed. Additionally, the consortium members were isolated, molecularly identified and enzymatically characterized. The results revealed a loss of microbial diversity at each culture transfer at the end of the induced selection process. The consortium selected from selective enrichment in cultures with LLDPE in powder form was more effective compared to the consortium selected in cultures with LLDPE in film form, resulting in a reduction of microplastic weight between 2.5 and 5.5%. Some members of the consortia showed a wide range of enzymatic activities related to the degradation of recalcitrant plastic polymers, with Pseudomonas aeruginosa REBP5 or Pseudomonas alloputida REBP7 strains standing out. The strains identified as Castellaniella denitrificans REBF6 and Debaryomyces hansenii RELF8 were also considered relevant members of the consortia although they showed more discrete enzymatic profiles. Other consortium members could collaborate in the prior degradation of additives accompanying the LLDPE polymer, facilitating the subsequent access of other real degraders of the plastic structure. Although preliminary, the microbial consortia selected in this work contribute to the current knowledge of the degradation of recalcitrant plastics of anthropogenic origin accumulated in natural environments.

3.
Front Microbiol ; 12: 697480, 2021.
Article in English | MEDLINE | ID: mdl-34456885

ABSTRACT

Composting involves the selection of a microbiota capable of resisting the high temperatures generated during the process and degrading the lignocellulose. A deep understanding of the thermophilic microbial community involved in such biotransformation is valuable to improve composting efficiency and to provide thermostable biomass-degrading enzymes for biorefinery. This study investigated the lignocellulose-degrading thermophilic microbial culturome at all the stages of plant waste composting, focusing on the dynamics, enzymes, and thermotolerance of each member of such a community. The results revealed that 58% of holocellulose (cellulose plus hemicellulose) and 7% of lignin were degraded at the end of composting. The whole fungal thermophilic population exhibited lignocellulose-degrading activity, whereas roughly 8-10% of thermophilic bacteria had this trait, although exclusively for hemicellulose degradation (xylan-degrading). Because of the prevalence of both groups, their enzymatic activity, and the wide spectrum of thermotolerance, they play a key role in the breakdown of hemicellulose during the entire process, whereas the degradation of cellulose and lignin is restricted to the activity of a few thermophilic fungi that persists at the end of the process. The xylanolytic bacterial isolates (159 strains) included mostly members of Firmicutes (96%) as well as a few representatives of Actinobacteria (2%) and Proteobacteria (2%). The most prevalent species were Bacillus licheniformis and Aeribacillus pallidus. Thermophilic fungi (27 strains) comprised only four species, namely Thermomyces lanuginosus, Talaromyces thermophilus, Aspergillus fumigatus, and Gibellulopsis nigrescens, of whom A. fumigatus and T. lanuginosus dominated. Several strains of the same species evolved distinctly at the stages of composting showing phenotypes with different thermotolerance and new enzyme expression, even not previously described for the species, as a response to the changing composting environment. Strains of Bacillus thermoamylovorans, Geobacillus thermodenitrificans, T. lanuginosus, and A. fumigatus exhibiting considerable enzyme activities were selected as potential candidates for the production of thermozymes. This study lays a foundation to further investigate the mechanisms of adaptation and acquisition of new traits among thermophilic lignocellulolytic microorganisms during composting as well as their potential utility in biotechnological processing.

4.
Front Microbiol ; 12: 784071, 2021.
Article in English | MEDLINE | ID: mdl-35003014

ABSTRACT

Wastewater treatment generates a huge amount of sewage sludge, which is a source of environmental pollution. Among the alternatives for the management of this waste, industrial composting stands out as one of the most relevant. The objective of this study was to analyze the bacterial population linked to this process and to determine its effectiveness for the reduction, and even elimination, of microorganisms and pathogens present in these organic wastes. For this purpose, the bacteriome and the fecal bacteria contamination of samples from different sewage sludge industrial composting facilities were evaluated. In addition, fecal bacteria indicators and pathogens, such as Salmonella, were isolated from samples collected at key stages of the process and characterized for antibiotic resistance to macrolide, ß-lactam, quinolone, and aminoglycoside families. 16S rRNA phylogeny data revealed that the process clearly evolved toward a prevalence of Firmicutes and Actinobacteria phyla, removing the fecal load. Moreover, antibiotic-resistant microorganisms present in the raw materials were reduced, since these were isolated only in the bio-oxidative phase. Therefore, industrial composting of sewage sludge results in a bio-safe final product suitable for use in a variety of applications.

5.
Bioresour Technol ; 316: 123946, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32769001

ABSTRACT

The agri-food waste (AW) require amendments for composting to adjust nutritional and physicochemical deficiencies. The theoretical mixtures formulation is difficult to reach on an industrial scale. The main objective of this work was to evaluate to what extent the composition of AW-based mixtures determines the quality of the final compost produced at the industrial scale. Raw materials having the same AW share characteristics, irrespectively of the amendments added, but their compost were different. All the materials were biological stable at the cooling phase, and mature enough at the end, although the degree of humification did not match with the absence of phytotoxicity. The final compost had sufficient quality even though the AW-based raw materials have a low C/N ratio (<20) and other characteristics such as high electrical conductivity (13 mS·cm-1) and pH (<8.5) that are unfavorable for composting. The management operations during industrial composting correct the deficiencies of raw materials.


Subject(s)
Composting , Refuse Disposal , Carbon , Food , Industrial Waste/analysis , Nitrogen/analysis , Soil
6.
J Environ Manage ; 265: 110528, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32421558

ABSTRACT

Biological transformation of municipal solid waste is an environment-friendly management strategy against recalcitrant residues. The bacterial biome that inhabit said residues are responsible of decomposing both simple and complex materials. For this reason, processes such as composting, which favor the acceleration of the transformation of organic matter, can contribute to the degradation of municipal solid waste. Not only as mere fertilizer for crops, but also as methods for the recovery of solid waste. However, the control of the conditions necessary to achieve an optimal process on an industrial scale is a great concern. Thus, the aim of this work focuses on the characterization of the bacterial microbiome on three municipal solid waste facilities in order to deepen the role of microorganisms in the state of the final product obtained. For it, an intensive metagenomic analysis as well as a battery of physicochemical determinations were carried out. The lack of adequate thermophilic phases was decisive in finding certain bacterial genera, such as Lactobacillus, which was significant through these processes. Biodiversity did not follow a common pattern in the three processes, neither in abundance nor in richness but, in general, it was greater during the bio-oxidative stage. Despite the different trend in terms of the degradation of carbon fractions in these wastes, at the end of the biodegradation treatments, a sufficient degree of bioestabilization of the organic matter was reached. The results offer the opportunity to obtain a level of detail unprecedented of the structure, dynamics and function of the bacterial community in real conditions, without the control offered by laboratory conditions or pilot plants.


Subject(s)
Composting , Microbiota , Refuse Disposal , Waste Management , Fertilizers , Soil , Solid Waste
SELECTION OF CITATIONS
SEARCH DETAIL
...