Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13281, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587264

ABSTRACT

Biological invasions represent a major threat to natural ecosystems. A primary source of invasive plants is ornamental horticulture, which selects traits related to invasiveness. This study evaluated the responses to water stress during germination and vegetative growth of six species used as ornamental or medicinal plants. Three of them are recognised as invasive weeds in many world areas. Seeds were exposed to increasing concentrations of polyethylene glycol (PEG) mimicking drought stress, and young plants in the vegetative growth stage were subjected to two levels of water stress. Results indicated that in the absence of stress in control conditions, the most competitive species were those reported as weeds, namely Bidens pilosa L., Oenothera biennis L., and Centaurea cyanus L., the last regarding germination velocity. Under stress, only two species, Limonium sinuatum (L.) Mill. and C. cyanus, maintained germination at -1 MPa osmotic potential, but in the recovery experiment, an osmopriming effect of PEG was observed. The most tolerant species during growth were two natives in the Mediterranean region, L. sinuatum and Lobularia maritima (L.) Desv., both accumulating the highest proline concentrations. The sixth species studied, Echinacea purpurea (L.) Moench., proved to be more susceptible to stress in the two developmental stages. This study reveals that the most significant traits associated with invasiveness were related to germination, especially in the absence of stress.


Subject(s)
Dehydration , Germination , Seeds , Ecosystem , Plant Weeds
2.
Plants (Basel) ; 12(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36986948

ABSTRACT

Ornamental plant species introduced into new environments can exhibit an invasive potential and adaptability to abiotic stress factors. In this study, the drought stress responses of four potentially invasive ornamental grass species (Cymbopogon citratus, Cortaderia selloana, Pennisetum alopecuroides and P. setaceum) were analysed. Several seed germination parameters were determined under increasing polyethylene glycol (PEG 6000) concentrations. Additionally, plants in the vegetative stage were subjected to intermediate and severe water stress treatments for four weeks. All species registered high germination rates in control conditions (no stress treatment), even at high PEG concentrations, except C. citratus, which did not germinate at -1 MPa osmotic potential. Upon applying the water stress treatments, P. alopecuroides plants showed the highest tolerance, and C. citratus appeared the most susceptible to drought. Stress-induced changes in several biochemical markers (photosynthetic pigments, osmolytes, antioxidant compounds, root and shoot Na+ and K+ contents), highlighted different responses depending on the species and the stress treatments. Basically, drought tolerance seems to depend to a large extent on the active transport of Na+ and K+ cations to the aerial part of the plants, contributing to osmotic adjustment in all four species and, in the case of the most tolerant P. alopecuroides, on the increasing root K+ concentration under water deficit conditions. The study shows the invasive potential of all species, except C. citratus, in dry areas such as the Mediterranean region, especially in the current climate change scenario. Particular attention should be given to P. alopecuroides, which is widely commercialised in Europe as ornamental.

3.
Life (Basel) ; 12(12)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36556385

ABSTRACT

Plant abundance and distribution are regulated by subtle changes in ecological factors, which are becoming more frequent under global climate change. Species with a higher tolerance to such changes, especially during early lifecycle stages, are highly likely to endure climate change. This study compared the germination adaptability of Halopeplis amplexicaulis and H. perfoliata, which differ in life-form and grow in different environments. Optimal conditions, tolerances and the biochemical responses of seeds to osmotic stresses were examined. Seeds of H. perfoliata germinated in a wider range of temperature regimes and were more tolerant to osmotic stresses than H. amplexicaulis seeds. Neither NaCl nor PEG treatment invoked the H2O2 content in germinating seeds of the tested species. Consequently, unaltered, or even decreased activities of H2O2 detoxification enzymes and non-enzymatic antioxidants were observed in germinating seeds in response to the aforementioned stresses. High and comparable levels of recovery from isotonic treatments, alongside a lack of substantial oxidative damage indicated that the osmotic stress, rather than the ionic toxicity, may be responsible for the germination inhibition. Hence, rainy periods, linked to water availability, may act as a key determinant for germination and H. perfoliata could be less affected by global warming owing to better germinability under high temperatures compared with H. amplexicaulis. Such studies involving biochemical analysis coupled with the germination ecology of congeneric species, which differ in life-form and occurrence are scarce, therefore are important in understanding the impacts of global changes on species abundance/distribution.

4.
RSC Adv ; 9(31): 17856-17867, 2019 Jun 04.
Article in English | MEDLINE | ID: mdl-35520594

ABSTRACT

Solid-state electrochemical methods have been applied to the establishment of patterns of plant growth and response to saline stress using seedlings of Inula helenium L., Dittrichia viscosa (L.) Greuter (Inula viscosa (L.) Aiton), Limbarda crithmoides (L.) Dumort (Inula crithmoides L.). Upon in situ electrochemical generation of reactive oxygen species (ROS) the reactivity with such species was monitored using voltammetric signals associated to the oxidation of polyphenolic components of the plants. A simple kinetic model based on second-order reaction between ROS and polyphenolic components is applied to electrochemical data yielding apparent rate constants which can be correlated with the level of saline stress revealing significant differences between the tested species. These results were contrasted with the seed germination response to salt concentration in order to check potentiality of voltammetric techniques as analytical tools for evaluating salt stress tolerance in plants.

5.
Front Plant Sci ; 8: 1438, 2017.
Article in English | MEDLINE | ID: mdl-28861106

ABSTRACT

We have performed an extensive study on the responses to salt stress in four related Limonium halophytes with different geographic distribution patterns, during seed germination and early vegetative growth. The aims of the work were twofold: to establish the basis for the different chorology of these species, and to identify relevant mechanisms of salt tolerance dependent on the control of ion transport and osmolyte accumulation. Seeds were germinated in vitro, in the presence of increasing NaCl concentrations, and subjected to "recovery of germination" tests; germination percentages and velocity were determined to establish the relative tolerance and competitiveness of the four Limonium taxa. Salt treatments were also applied to young plants, by 1-month irrigation with NaCl up to 800 mM; then, growth parameters, levels of monovalent and divalent ions (in roots and leaves), and leaf contents of photosynthetic pigments and common osmolytes were determined in control and stressed plants of the four species. Seed germination is the most salt-sensitive developmental phase in Limonium. The different germination behavior of the investigated species appears to be responsible for their geographical range size: L. narbonense and L. virgatum, widespread throughout the Mediterranean, are the most tolerant and the most competitive at higher soil salinities; the endemic L. santapolense and L. girardianum are the most sensitive and more competitive only at lower salinities. During early vegetative growth, all taxa showed a strong tolerance to salt stress, although slightly higher in L. virgatum and L. santapolense. Salt tolerance is based on the efficient transport of Na+ and Cl- to the leaves and on the accumulation of fructose and proline for osmotic adjustment. Despite some species-specific quantitative differences, the accumulation patterns of the different ions were similar in all species, not explaining differences in tolerance, except for the apparent activation of K+ transport to the leaves at high external salinity, observed only in the most tolerant L. narbonense and L. virgatum. This specific response may be therefore relevant for salt tolerance in Limonium. The ecological implications of these results, which can contribute to a more efficient management of salt marshes conservation/regeneration programs, are also discussed.

6.
Am J Bot ; 99(4): 721-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22434770

ABSTRACT

PREMISE OF THE STUDY: Fern spores are unicellular and haploid, making them a potential model system to study factors that regulate lifespan and mechanisms of aging. Aging rates of nongreen spores were measured to compare longevity characteristics among diverse fern species and test for orthodox response to storage temperature and moisture. METHODS: Aging of spores from 10 fern species was quantified by changes in germination and growth parameters. Storage temperature ranged from ambient room to -196°C (liquid nitrogen); spores were dried to ambient relative humidity (RH) or using silica gel. KEY RESULTS: Survival of spores varied under ambient storage conditions, with one species dying within a year and two species having greater than 50% survival after 3 years. Few changes in germination or growth were observed in spores stored at either -80°C or -196°C over the same 3-yr study period. Spores stored at -25°C aged anomalously quickly, especially those dried to ambient RH or subjected to repeated freeze-thaw cycles. CONCLUSIONS: Spore longevity is comparable to orthodox seed longevity under ambient storage conditions, with wide variation among species and shelflife extended by drying or cooling. However, faster aging during freezer storage may indicate a similar syndrome of damage experienced by seeds categorized as "intermediate". The damage is avoided by storage at -80°C or liquid nitrogen temperatures, making cryoconservation an effective and broadly applicable tool to extend fern spore longevity. The study demonstrates that spore banks are a feasible approach for ex situ conservation of this important plant group.


Subject(s)
Conservation of Natural Resources , Desiccation , Ferns/physiology , Temperature , Ecosystem , Ferns/growth & development , Freezing , Germination , Regression Analysis , Spores
SELECTION OF CITATIONS
SEARCH DETAIL
...