Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 11(1): 831-842, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28048935

ABSTRACT

Programmed molecular recognition is being developed for the bionanofabrication of mixed organic/inorganic supramolecular assemblies for applications in electronics, photonics, and medicine. For example, DNA-based nanotechnology seeks to exploit the easily programmed complementary base-pairing of DNA to direct assembly of complex, designed nanostructures. Optimal solution conditions for bionanofabrication, mimicking those of biological systems, may involve high concentrations of biomacromolecules (proteins, nucleic acids, etc.) and significant concentrations of various ions (Mg2+, Na+, Cl-, etc.). Given a desire to assemble diverse inorganic components (metallic nanoparticles, quantum dots, carbon nanostructures, etc.), it will be increasingly difficult to find solution conditions simultaneously compatible with all components. Frequently, the use of chemical surfactants is undesirable, leaving a need for the development of alternative strategies. Herein, we discuss the use of artificial, diblock polypeptides in the role of solution compatibilizing agents for molecular assembly. We describe the use of two distinct diblock polypeptides with affinity for DNA in the stabilization of DNA origami and DNA-functionalized gold nanoparticles (spheres and rods) in solution, protection of DNA from enzymatic degradation, as well as two 3D tetrahedral DNA origamis. We present initial data showing that the diblock polypeptides promote the formation in the solution of desired organic/inorganic assemblies.


Subject(s)
DNA/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Peptides/chemistry , Protein Engineering , Macromolecular Substances/chemistry , Microscopy, Atomic Force , Nanotechnology , Particle Size , Solubility , Surface Properties
2.
ACS Nano ; 11(1): 144-152, 2017 01 24.
Article in English | MEDLINE | ID: mdl-27936577

ABSTRACT

Emerging DNA-based nanotechnologies would benefit from the ability to modulate the properties (e.g., solubility, melting temperature, chemical stability) of diverse DNA templates (single molecules or origami nanostructures) through controlled, self-assembling coatings. We here introduce a DNA coating agent, called C8-BSso7d, which binds to and coats with high specificity and affinity, individual DNA molecules as well as folded origami nanostructures. C8-BSso7d coats and protects without condensing, collapsing or destroying the spatial structure of the underlying DNA template. C8-BSso7d combines the specific nonelectrostatic DNA binding affinity of an archeal-derived DNA binding domain (Sso7d, 7 kDa) with a long hydrophilic random coil polypeptide (C8, 73 kDa), which provides colloidal stability (solubility) through formation of polymer brushes around the DNA templates. C8-BSso7d is produced recombinantly in yeast and has a precise (but engineerable) amino acid sequence of precise length. Using electrophoresis, AFM, and fluorescence microscopy we demonstrate protein coat formation with stiffening of one-dimensional templates (linear dsDNA, supercoiled dsDNA and circular ssDNA), as well as coat formation without any structural distortion or disruption of two-dimensional DNA origami template. Combining the programmability of DNA with the nonperturbing precise coating capability of the engineered protein C8-BSso7d holds promise for future applications such as the creation of DNA-protein hybrid networks, or the efficient transfection of individual DNA nanostructures into cells.


Subject(s)
DNA/chemistry , Peptides/chemistry , Proteins/chemistry , Binding Sites , Models, Molecular , Nanostructures/chemistry , Nanotechnology , Peptides/chemical synthesis , Protein Conformation , Proteins/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...