Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
CNS Neurosci Ther ; 30(4): e14465, 2024 04.
Article in English | MEDLINE | ID: mdl-37830163

ABSTRACT

PURPOSES: To identify potent DNA methylation candidates that could predict response to temozolomide (TMZ) in glioblastomas (GBMs) that do not have glioma-CpGs island methylator phenotype (G-CIMP) but have an unmethylated promoter of O-6-methylguanine-DNA methyltransferase (unMGMT). METHODS: The discovery-validation approach was planned incorporating a series of G-CIMP-/unMGMT GBM cohorts with DNA methylation microarray data and clinical information, to construct multi-CpG prediction models. Different bioinformatic and experimental analyses were performed for biological exploration. RESULTS: By analyzing discovery sets with radiotherapy (RT) plus TMZ versus RT alone, we identified a panel of 64 TMZ efficacy-related CpGs, from which a 10-CpG risk signature was further constructed. Both the 64-CpG panel and the 10-CpG risk signature were validated showing significant correlations with overall survival of G-CIMP-/unMGMT GBMs when treated with RT/TMZ, rather than RT alone. The 10-CpG risk signature was further observed for aiding TMZ choice by distinguishing differential outcomes to RT/TMZ versus RT within each risk subgroup. Functional studies on GPR81, the gene harboring one of the 10 CpGs, indicated its distinct impacts on TMZ resistance in GBM cells, which may be dependent on the status of MGMT expression. CONCLUSIONS: The 64 TMZ efficacy-related CpGs and in particular the 10-CpG risk signature may serve as promising predictive biomarker candidates for guiding optimal usage of TMZ in G-CIMP-/unMGMT GBMs.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , DNA Methylation , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioma/genetics , DNA Modification Methylases/genetics , Phenotype , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Tumor Suppressor Proteins/genetics , DNA Repair Enzymes/genetics
3.
CRISPR J ; 6(1): 17-31, 2023 02.
Article in English | MEDLINE | ID: mdl-36629845

ABSTRACT

Ganglioside-monosialic acid (GM1) gangliosidosis, a rare autosomal recessive disorder, is frequently caused by deleterious single nucleotide variants (SNVs) in GLB1 gene. These variants result in reduced ß-galactosidase (ß-gal) activity, leading to neurodegeneration associated with premature death. Currently, no effective therapy for GM1 gangliosidosis is available. Three ongoing clinical trials aim to deliver a functional copy of the GLB1 gene to stop disease progression. In this study, we show that 41% of GLB1 pathogenic SNVs can be replaced by adenine base editors (ABEs). Our results demonstrate that ABE efficiently corrects the pathogenic allele in patient-derived fibroblasts, restoring therapeutic levels of ß-gal activity. Off-target DNA analysis did not detect off-target editing activity in treated patient's cells, except a bystander edit without consequences on ß-gal activity based on 3D structure bioinformatics predictions. Altogether, our results suggest that gene editing might be an alternative strategy to cure GM1 gangliosidosis.


Subject(s)
Gangliosidosis, GM1 , Humans , Gangliosidosis, GM1/therapy , Gangliosidosis, GM1/drug therapy , beta-Galactosidase/genetics , beta-Galactosidase/chemistry , beta-Galactosidase/metabolism , Gene Editing , CRISPR-Cas Systems/genetics , Alleles
4.
Epigenomics ; 14(20): 1233-1247, 2022 10.
Article in English | MEDLINE | ID: mdl-36444681

ABSTRACT

Aim: We aimed to identify potent CpG signatures predicting temozolomide (TMZ) response in glioblastomas (GBMs) that do not have the glioma-CpG island methylator phenotype (G-CIMP) but have a methylated promoter of MGMT (meMGMT). Materials & methods: Different datasets of non-G-CIMP meMGMT GBMs with molecular and clinical data were analyzed. Results: A panel of 77 TMZ efficacy-related CpGs and a seven-CpG risk signature were identified and validated for distinguishing differential outcomes to radiotherapy plus TMZ versus radiotherapy alone in non-G-CIMP meMGMT GBMs. An integrated classification scheme was also proposed for refining a MGMT-based TMZ-guiding approach in all G-CIMP-GBMs. Conclusion: The CpG signatures may serve as promising predictive biomarker candidates for guiding optimal TMZ usage in non-G-CIMP meMGMT GBMs.


Glioblastomas that do not have the glioma-CpG island methylator phenotype (G-CIMP) but have a methylated promoter of the MGMT gene (meMGMT) show considerable variability in their response to temozolomide (TMZ). Powerful biomarkers that provide predictive information on optimal TMZ decision-making can be clinically useful. This study has identified and validated a panel of 77 TMZ efficacy-related CpGs and a seven-CpG risk signature for predicting TMZ usage in non-G-CIMP meMGMT glioblastomas. An integrated classification scheme is proposed for refining a MGMT-based TMZ-guiding approach in non-G-CIMP glioblastomas.


Subject(s)
Glioblastoma , Glioma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , CpG Islands , Glioma/drug therapy , Glioma/genetics , Phenotype , DNA Modification Methylases/genetics , Tumor Suppressor Proteins/genetics , DNA Repair Enzymes/genetics
5.
J Oncol ; 2022: 6345160, 2022.
Article in English | MEDLINE | ID: mdl-35712126

ABSTRACT

Objective: Alterations in the methylation state of pseudogenes may serve as clinically useful biomarkers of glioblastomas (GBMs) that do not have glioma-CpG island methylator phenotype (G-CIMP). Methods: Non-G-CIMP GBM datasets were included for evaluation, and a RISK-score signature was determined from the methylation state of pseudogene loci. Both bioinformatic and experimental analyses were performed for biological validation. Results: By integrating clinical information with DNA methylation microarray data, we screened a panel of eight CpGs from discovery cohorts of non-G-CIMP GBMs. Each CpG could accurately and independently predict the prognosis of patients under a treatment regime that combined radiotherapy (RT) and temozolomide (TMZ). The 8-CpG signature appeared to show opposite prognostic correlations between patients treated with RT/TMZ and those treated with RT monotherapy. The analyses further indicated that this signature had predictive value for TMZ efficacy because different survival benefits between RT/TMZ and RT therapies were observed in each risk subgroup. The incorporation of other risk factors, such as age and O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status, with our pseudogene methylation signature could provide precise risk classification. In vitro experimental data revealed that two locus-specific pseudogenes (ZNF767P and CLEC4GP1) may modulate TMZ resistance via distinct mechanisms in GBM cells. Conclusion: The biologically and clinically relevant RISK-score signature, based on pseudogene methylation loci, may offer information for predicting TMZ responses of non-G-CIMP GBMs, that is independent from, but complementary to, MGMT-based approaches.

6.
Cancer Gene Ther ; 29(8-9): 1263-1275, 2022 08.
Article in English | MEDLINE | ID: mdl-35194200

ABSTRACT

DNA methylation, a major biological process regulating the transcription, contributes to the pathophysiology of hematologic malignancies, and hypomethylating agents are commonly used to treat myelodysplastic syndromes (MDS) and acute myeloid leukemias (AML). In these diseases, bone marrow mesenchymal stromal cells (MSCs) play a key supportive role through the production of various signals and interactions. The DNA methylation status of MSCs, likely to reflect their functionality, might be relevant to understand their contribution to the pathophysiology of these diseases. Consequently, the aim of our study was to analyze the modifications of DNA methylation profiles of MSCs induced by MDS or AML. MSCs from MDS/AML patients were characterized via 5-methylcytosine quantification, gene expression profiles of key regulators of DNA methylation, identification of differentially methylated regions (DMRs) by methylome array, and quantification of DMR-coupled genes expression. MDS and AML-MSCs displayed global hypomethylation and under-expression of DNMT1 and UHRF1. Methylome analysis revealed aberrant methylation profiles in all MDS and in a subgroup of AML-MSCs. This aberrant methylation was preferentially found in the sequence of homeobox genes, especially from the HOX family (HOXA1, HOXA4, HOXA5, HOXA9, HOXA10, HOXA11, HOXB5, HOXC4, and HOXC6), and impacted on their expression. These results highlight modifications of DNA methylation in MDS/AML-MSCs, both at global and focal levels dysregulating the expression of HOX genes well known for their involvement in leukemogenesis. Such DNA methylation in MSCs could be the consequence of the malignant disease or could participate in its development through defective functionality or exosomal transfer of HOX transcription factors from MSCs to hematopoietic cells.


Subject(s)
Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Myelodysplastic Syndromes , Bone Marrow/pathology , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , DNA Methylation , Genes, Homeobox/genetics , Humans , Leukemia, Myeloid, Acute/pathology , Mesenchymal Stem Cells/metabolism , Myelodysplastic Syndromes/genetics , Transcription Factors/genetics , Ubiquitin-Protein Ligases/metabolism
8.
J Cell Mol Med ; 25(23): 10846-10856, 2021 12.
Article in English | MEDLINE | ID: mdl-34773369

ABSTRACT

Raman spectroscopy is an imaging technique that has been applied to assess molecular compositions of living cells to characterize cell types and states. However, owing to the diverse molecular species in cells and challenges of assigning peaks to specific molecules, it has not been clear how to interpret cellular Raman spectra. Here, we provide firm evidence that cellular Raman spectra (RS) and transcriptomic profiles of glioblastoma can be computationally connected and thus interpreted. We find that the dimensions of high-dimensional RS and transcriptomes can be reduced and connected linearly through a shared low-dimensional subspace. Accordingly, we were able to predict global gene expression profiles by applying the calculated transformation matrix to Raman spectra and vice versa. From these analyses, we extract a minimal gene expression signature associated with specific RS profiles and predictive of disease outcome.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Spectrum Analysis, Raman/methods , Transcriptome/genetics , Adult , Aged , Female , Humans , Male , Middle Aged
9.
Oncoimmunology ; 10(1): 1902071, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33854822

ABSTRACT

The clinical and molecular implications of DNA methylation alterations remain unclear among the majority of glioblastomas (GBMs) without glioma-CpGs island methylator phenotype (G-CIMP); integrative multi-level molecular profiling may provide useful information. Independent cohorts of non-G-CIMP GBMs or IDH wild type (wt) lower-grade gliomas (LGGs) from local and public databases with DNA methylation and gene expression microarray data were included for discovery and validation of a multimarker signature, combined using a RISK score model. Bioinformatic and in vitro functional analyses were employed for biological validation. Using a strict multistep selection approach, we identified eight CpGs, each of which was significantly correlated with overall survival (OS) of non-G-CIMP GBMs, independent of age, the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, treatments and other identified CpGs. An epigenetic RISK signature of the 8 CpGs was developed and validated to robustly and independently prognosticate prognosis in different cohorts of not only non-G-GIMP GBMs, but also IDHwt LGGs. It also showed good discriminating value in stratified cohorts by current clinical and molecular factors. Bioinformatic analysis revealed consistent correlation of the epigenetic signature to distinct immune-relevant transcriptional profiles of GBM bulks. Functional experiments showed that S100A2 appeared to be epigenetically regulated by one identified CpG and was associated with GBM cell proliferation, apoptosis, invasion, migration and immunosuppression. The prognostic 8-CpGs RISK score signature may be of promising value for refining current glioma risk classification, and its potential links to distinct immune phenotypes make it a promising biomarker candidate for predicting response to anti-glioma immunotherapy.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/diagnosis , CpG Islands/genetics , Epigenesis, Genetic/genetics , Glioblastoma/diagnosis , Humans , Phenotype
10.
Cancers (Basel) ; 12(12)2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33291363

ABSTRACT

The role of Epigenetics in Epithelial Mesenchymal Transition (EMT) has recently emerged. Two epigenetic enzymes with paradoxical roles have previously been associated to EMT, EZH2 (Enhancer of Zeste 2 Polycomb Repressive Complex 2 (PRC2) Subunit), a lysine methyltranserase able to add the H3K27me3 mark, and the histone demethylase KDM6B (Lysine Demethylase 6B), which can remove the H3K27me3 mark. Nevertheless, it still remains unclear how these enzymes, with apparent opposite activities, could both promote EMT. In this study, we evaluated the function of these two enzymes using an EMT-inducible model, the lung cancer A549 cell line. ChIP-seq coupled with transcriptomic analysis showed that EZH2 and KDM6B were able to target and modulate the expression of different genes during EMT. Based on this analysis, we described INHBB, WTN5B, and ADAMTS6 as new EMT markers regulated by epigenetic modifications and directly implicated in EMT induction.

11.
Cancer Lett ; 494: 73-83, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32882336

ABSTRACT

Glioblastoma multiforme (GBM) is the most severe primary brain cancer. Despite an aggressive treatment comprising surgical resection and radio/chemotherapy, patient's survival post diagnosis remains short. A limitation for success in finding novel improved therapeutic options for such dismal disease partly lies in the lack of a relevant animal model that accurately recapitulates patient disease and standard of care. In the present study, we have developed an immunocompetent GBM model that includes tumor surgery and a radio/chemotherapy regimen resembling the Stupp protocol and we have used this model to test the impact of the pharmacological inhibition of the endoplasmic reticulum (ER) stress sensor IRE1, on treatment efficacy.


Subject(s)
Benzopyrans/administration & dosage , Brain Neoplasms/therapy , Combined Modality Therapy/methods , Glioblastoma/therapy , Morpholines/administration & dosage , Animals , Benzopyrans/pharmacology , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Cell Line, Tumor , Craniotomy , Drug Therapy , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/immunology , Humans , Immunocompetence , Injections, Intralesional , Mice , Morpholines/pharmacology , Neoadjuvant Therapy , Radiotherapy , Treatment Outcome , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
12.
Mol Cancer ; 19(1): 36, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32098627

ABSTRACT

BACKGROUND: Literature reports that mature microRNA (miRNA) can be methylated at adenosine, guanosine and cytosine. However, the molecular mechanisms involved in cytosine methylation of miRNAs have not yet been fully elucidated. Here we investigated the biological role and underlying mechanism of cytosine methylation in miRNAs in glioblastoma multiforme (GBM). METHODS: RNA immunoprecipitation with the anti-5methylcytosine (5mC) antibody followed by Array, ELISA, dot blot, incorporation of a radio-labelled methyl group in miRNA, and miRNA bisulfite sequencing were perfomred to detect the cytosine methylation in mature miRNA. Cross-Linking immunoprecipiation qPCR, transfection with methylation/unmethylated mimic miRNA, luciferase promoter reporter plasmid, Biotin-tagged 3'UTR/mRNA or miRNA experiments and in vivo assays were used to investigate the role of methylated miRNAs. Finally, the prognostic value of methylated miRNAs was analyzed in a cohorte of GBM pateints. RESULTS: Our study reveals that a significant fraction of miRNAs contains 5mC. Cellular experiments show that DNMT3A/AGO4 methylated miRNAs at cytosine residues inhibit the formation of miRNA/mRNA duplex and leading to the loss of their repressive function towards gene expression. In vivo experiments show that cytosine-methylation of miRNA abolishes the tumor suppressor function of miRNA-181a-5p miRNA for example. Our study also reveals that cytosine-methylation of miRNA-181a-5p results is associated a poor prognosis in GBM patients. CONCLUSION: Together, our results indicate that the DNMT3A/AGO4-mediated cytosine methylation of miRNA negatively.


Subject(s)
Biomarkers, Tumor/genetics , Cytosine/chemistry , DNA Methylation , Glioblastoma/pathology , MicroRNAs/genetics , Animals , Apoptosis , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Cell Proliferation , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Mice , Mice, Nude , Prognosis , Promoter Regions, Genetic , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
13.
Clin Epigenetics ; 11(1): 76, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31088577

ABSTRACT

OBJECTIVE: To identify novel epigenetic signatures that could provide predictive information that is complementary to promoter methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) gene for predicting temozolomide (TMZ) response, among glioblastomas (GBMs) without glioma-CpGs island methylator phenotype (G-CIMP) METHODS: Different cohorts of primary non-G-CIMP GBMs with genome-wide DNA methylation microarray data were included for discovery and validation of a multimarker signature, combined using a RISK score model. Different statistical analyses and functional experiments were performed for clinical and biological validation. RESULTS: By employing discovery cohorts with radiotherapy (RT) and TMZ versus RT alone and a strict multistep selection strategy, we identified seven CpGs, each of which was significantly correlated with overall survival (OS) of non-G-CIMP GBMs with RT/TMZ, independent of age, MGMT promoter methylation status, and other identified CpGs. A RISK score signature of the 7 CpGs was developed and validated to distinguish non-G-CIMP GBMs with differential survival outcomes to RT/TMZ, but not to RT alone. The interaction analyses also showed differential outcomes to RT/TMZ versus RT alone within the RISK score-based subgroups. The signature could also improve the risk classification by age and MGMT promoter methylation status. Functional experiments showed that HSBP2 appeared to be epigenetically regulated by one identified CpG and was associated with TMZ resistance, but it was not associated with cell proliferation or apoptosis in GBM cell lines. The predictive value of the single CpG methylation of HSBP2 by pyrosequencing was observed in a local cohort of isocitrate dehydrogenase 1 (IDH1) R132H wild-type GBMs. CONCLUSIONS: This novel epigenetic signature might be a promising predictive (but not a general prognostic) biomarker and be helpful for refining the MGMT-based guiding approach to TMZ usage in non-G-CIMP GBMs.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Drug Resistance, Neoplasm , Glioblastoma/drug therapy , HSP27 Heat-Shock Proteins/genetics , Temozolomide/therapeutic use , Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , CpG Islands/drug effects , CpG Islands/radiation effects , DNA Methylation/drug effects , DNA Methylation/radiation effects , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/radiation effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Glioblastoma/genetics , Glioblastoma/radiotherapy , Humans , Isocitrate Dehydrogenase/genetics , Male , Survival Analysis , Temozolomide/pharmacology , Treatment Outcome , Tumor Suppressor Proteins/genetics
14.
CNS Neurosci Ther ; 25(9): 937-950, 2019 09.
Article in English | MEDLINE | ID: mdl-31016891

ABSTRACT

AIMS: DNA methylation has been found to regulate microRNAs (miRNAs) expression, but the prognostic value of miRNA-related DNA methylation aberration remained largely elusive in cancers including glioblastomas (GBMs). This study aimed to investigate the clinical and biological feature of miRNA methylation in GBMs of non-glioma-CpG island methylator phenotype (non-G-CIMP). METHODS: Prognostic miRNA methylation loci were analyzed, with TCGA and Rennes cohort as training sets, and independent datasets of GBMs and low-grade gliomas (LGGs) were obtained as validation sets. Different statistical and bioinformatic analysis and experimental validations were performed to clinically and biologically characterize the signature. RESULTS: We identified and validated a risk score based on methylation status of five miRNA-associated CpGs which could predict survival of GBM patients in a series of training and validation sets. This signature was independent of age and O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. The risk subgroup was associated with angiogenesis and accordingly differential responses to bevacizumab-contained therapy. MiRNA target analysis and in vitro experiments further confirmed the accuracy of this signature. CONCLUSION: The five-CpG signature of miRNA methylation was biologically relevant and was of potential prognostic and predictive value for GBMs. It might be of help for improving individualized treatment.


Subject(s)
CpG Islands/genetics , DNA Methylation/genetics , Databases, Genetic , Genome-Wide Association Study/methods , Glioblastoma/genetics , MicroRNAs/genetics , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Glioblastoma/diagnosis , Humans , Male , Middle Aged , Phenotype , Retrospective Studies , Young Adult
15.
Cell Death Dis ; 10(3): 205, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30814494

ABSTRACT

Type III epithelial-mesenchymal transition (EMT) has been previously associated with increased cell migration, invasion, metastasis, and therefore cancer aggressiveness. This reversible process is associated with an important gene expression reprogramming mainly due to epigenetic plasticity. Nevertheless, most of the studies describing the central role of epigenetic modifications during EMT were performed in a single-cell model and using only one mode of EMT induction. In our study, we studied the overall modulations of gene expression and epigenetic modifications in four different EMT-induced cell models issued from different tissues and using different inducers of EMT. Pangenomic analysis (transcriptome and ChIP-sequencing) validated our hypothesis that gene expression reprogramming during EMT is largely regulated by epigenetic modifications of a wide range of genes. Indeed, our results confirmed that each EMT model is unique and can be associated with a specific transcriptome profile and epigenetic program. However, we could select some genes or pathways that are similarly regulated in the different models and that could therefore be used as a common signature of all EMT models and become new biomarkers of the EMT phenotype. As an example, we can cite the regulation of gene-coding proteins involved in the degradation of the extracellular matrix (ECM), which are highly induced in all EMT models. Based on our investigations and results, we identified ADAM19 as a new biomarker of in vitro and in vivo EMT and we validated this biological new marker in a cohort of non-small lung carcinomas.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , Neoplasms/genetics , A549 Cells , Epidermal Growth Factor/pharmacology , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/pathology , Retrospective Studies , Tumor Necrosis Factor-alpha/pharmacology
16.
J Neurooncol ; 142(3): 521, 2019 May.
Article in English | MEDLINE | ID: mdl-30859482

ABSTRACT

In the initial, online publication, the authors' given names were captured as family names and vice versa. The names are correctly shown here. The original article has been corrected.

17.
J Neurooncol ; 142(3): 511-520, 2019 May.
Article in English | MEDLINE | ID: mdl-30756272

ABSTRACT

INTRODUCTION: The phenotypic heterogeneity of diffuse gliomas is still inconsistently explained by known molecular abnormalities. Here, we report the molecular and radiological features of diffuse grade WHO II and III gliomas involving the insula and its potential impact on prognosis. METHODS: Clinical, pathological, molecular and neuro-radiological features of 43 consecutive patients who underwent a surgical resection between 2006 and 2013 for a grade II and III gliomas involving the insula was retrospectively analyzed. RESULTS: Median age was 44.4 years. Eight patients had oligodendrogliomas, IDH mutant (IDHmut) and 1p/19q-codeleted (6 grade II, 2 grade III). Twenty-eight patients had diffuse astrocytomas, IDHmut (22 grade II and 6 grade III) and seven patients had grade II diffuse astrocytomas, IDHwt (A-IDHwt). Vimentin staining was exclusively recorded in tumor cells from A-IDHwt (p = 0.001). Mean cerebral blood volume (CBV) (p = 0.018), maximal value of CBV (p = 0.017) and ratio of the corrected CBV (p = 0.022) were lower for A-IDHwt. Volumetric segmentation of ADC allowed the identification of the tumor cores, which were smaller in A-IDHwt (p < 0.001). The tumor occurrences of A-IDHwt were exclusively located into the temporo-insular region. Median progression-free survival (PFS) and overall survival (OS) were 50.9 months (95% CI: 26.7-75.0) and 80.9 months (60.1-101.6). By multivariate analysis, A-IDHwt (p = 0.009; p = 0.019), 7p gain and 10q loss (p = 0.009; p = 0.016) and vimentin positive staining (p = 0.011; p = 0.029) were associated with poor PFS and OS respectively. CONCLUSIONS: Insular low-grade A-IDHwt presented with poor prognosis despite a smaller tumor core and no evidence of increased perfusion on MR imaging.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , Neuroimaging/methods , Adult , Aged , Brain Neoplasms/classification , Brain Neoplasms/genetics , Cerebral Blood Volume , Female , Follow-Up Studies , Glioma/classification , Glioma/genetics , Humans , Isocitrate Dehydrogenase/genetics , Male , Middle Aged , Mutation , Neoplasm Grading , Retrospective Studies , World Health Organization , Young Adult
18.
BMC Cancer ; 18(1): 1213, 2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30514244

ABSTRACT

BACKGROUND: Glioblastoma (GB) is a highly invasive primary brain tumor that nearly always systematically recurs at the site of resection despite aggressive radio-chemotherapy. Previously, we reported a gene expression signature related to tumor infiltration. Within this signature, the EMX2 gene encodes a homeodomain transcription factor that we found was down regulated in glioblastoma. As EMX2 is reported to play a role in carcinogenesis, we investigated the impact of EMX2 overexpression in glioma-related cell lines. METHODS: For that purpose, we constructed tetracycline-inducible EMX2 expression lines. Transfected cell phenotypes (proliferation, cell death and cell cycle) were assessed in time-course experiments. RESULTS: Restoration of EMX2 expression in U87 glioblastoma cells significantly inhibited cell proliferation. This inhibition was reversible after EMX2 removal from cells. EMX2-induced proliferative inhibition was very likely due to cell cycle arrest in G1/S transition and was not accompanied by signs of cell death. CONCLUSION: Our results suggest that EMX2 may constitute a putative therapeutic target for GB treatment. Further studies are required to decipher the gene networks and transduction signals involved in EMX2's effect on cell proliferation.


Subject(s)
Brain Neoplasms/metabolism , Cell Cycle Checkpoints/physiology , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Homeodomain Proteins/biosynthesis , Transcription Factors/biosynthesis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/physiology , Glioblastoma/genetics , Glioblastoma/pathology , Homeodomain Proteins/genetics , Humans , Transcription Factors/genetics , Tumor Cells, Cultured
19.
CNS Neurosci Ther ; 24(3): 167-177, 2018 03.
Article in English | MEDLINE | ID: mdl-29350455

ABSTRACT

AIMS: We aimed to identify a clinically useful biomarker using DNA methylation-based information to optimize individual treatment of patients with glioblastoma (GBM). METHODS: A six-CpG panel was identified by incorporating genome-wide DNA methylation data and clinical information of three distinct discovery sets and was combined using a risk-score model. Different validation sets of GBMs and lower-grade gliomas and different statistical methods were implemented for prognostic evaluation. An integrative analysis of multidimensional TCGA data was performed to molecularly characterize different risk tumors. RESULTS: The six-CpG risk-score signature robustly predicted overall survival (OS) in all discovery and validation cohorts and in a treatment-independent manner. It also predicted progression-free survival (PFS) in available patients. The multimarker epigenetic signature was demonstrated as an independent prognosticator and had better performance than known molecular indicators such as glioma-CpG island methylator phenotype (G-CIMP) and proneural subtype. The defined risk subgroups were molecularly distinct; high-risk tumors were biologically more aggressive with concordant activation of proangiogenic signaling at multimolecular levels. Accordingly, we observed better OS benefits of bevacizumab-contained therapy to high-risk patients in independent sets, supporting its implication in guiding usage of antiangiogenic therapy. Finally, the six-CpG signature refined the risk classification based on G-CIMP and MGMT methylation status. CONCLUSIONS: The novel six-CpG signature is a robust and independent prognostic indicator for GBMs and is of promising value to improve personalized management.


Subject(s)
Brain Neoplasms/genetics , CpG Islands , DNA Methylation , Glioblastoma/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Female , Follow-Up Studies , Genetic Predisposition to Disease , Glioblastoma/metabolism , Glioblastoma/mortality , Humans , Male , Middle Aged , Prognosis , Young Adult
20.
EMBO Mol Med ; 10(3)2018 03.
Article in English | MEDLINE | ID: mdl-29311133

ABSTRACT

Proteostasis imbalance is emerging as a major hallmark of cancer, driving tumor aggressiveness. Evidence suggests that the endoplasmic reticulum (ER), a major site for protein folding and quality control, plays a critical role in cancer development. This concept is valid in glioblastoma multiform (GBM), the most lethal primary brain cancer with no effective treatment. We previously demonstrated that the ER stress sensor IRE1α (referred to as IRE1) contributes to GBM progression, through XBP1 mRNA splicing and regulated IRE1-dependent decay (RIDD) of RNA Here, we first demonstrated IRE1 signaling significance to human GBM and defined specific IRE1-dependent gene expression signatures that were confronted to human GBM transcriptomes. This approach allowed us to demonstrate the antagonistic roles of XBP1 mRNA splicing and RIDD on tumor outcomes, mainly through selective remodeling of the tumor stroma. This study provides the first demonstration of a dual role of IRE1 downstream signaling in cancer and opens a new therapeutic window to abrogate tumor progression.


Subject(s)
Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Carcinogenesis/pathology , Endoribonucleases/metabolism , Glioblastoma/enzymology , Glioblastoma/pathology , Protein Serine-Threonine Kinases/metabolism , Brain Neoplasms/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Endoribonucleases/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Humans , Models, Biological , Mutation/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Phenotype , Protein Serine-Threonine Kinases/genetics , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...