Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Article in English | MEDLINE | ID: mdl-38194392

ABSTRACT

In the field of EMG-based force modeling, the ability to generalize models across individuals could play a significant role in its adoption across a range of applications, including assistive devices, robotic and rehabilitation devices. However, current studies have predominately focused on intra-subject modeling, largely neglecting the burden of end-user data acquisition. In this work, we propose the use of transfer learning (TL) to generalize force modeling to a new user by first establishing a baseline model trained using other users' data, and then adapting to the end-user using a small amount of new data (only 10% , 20% , and 40% of the new user data). Using a deep multimodal convolutional neural network, consisting of two CNN models, one with high-density (HD) EMG and one with motion data recorded by an Inertial Measurement Unit (IMU), our proposed TL technique significantly improved force modeling compared to leave-one-subject-out (LOSO) and even intra-subject scenarios. The TL approach increased the average R squared values of the force modeling task by 60.81%, 190.53%, and 199.79% compared to the LOSO case, and by 13.4%, 36.88%, and 45.51% compared to the intra-subject case for isotonic, isokinetic and dynamic conditions, respectively. These results show that it is possible to adapt to a new user with minimal data while improving performance significantly compared to the intra-subject scenario. We also show that TL can be used to generalize on a new experimental condition for a new user.


Subject(s)
Neural Networks, Computer , Self-Help Devices , Humans , Electromyography/methods , Upper Extremity , Machine Learning
2.
IEEE J Biomed Health Inform ; 28(2): 789-800, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37948139

ABSTRACT

This paper presents a systematic investigation into the effectiveness of Self-Supervised Learning (SSL) methods for Electrocardiogram (ECG) arrhythmia detection. We begin by conducting a novel analysis of the data distributions on three popular ECG-based arrhythmia datasets: PTB-XL, Chapman, and Ribeiro. To the best of our knowledge, our study is the first to quantitatively explore and characterize these distributions in the area. We then perform a comprehensive set of experiments using different augmentations and parameters to evaluate the effectiveness of various SSL methods, namely SimCRL, BYOL, and SwAV, for ECG representation learning, where we observe the best performance achieved by SwAV. Furthermore, our analysis shows that SSL methods achieve highly competitive results to those achieved by supervised state-of-the-art methods. To further assess the performance of these methods on both In-Distribution (ID) and Out-of-Distribution (OOD) ECG data, we conduct cross-dataset training and testing experiments. Our comprehensive experiments show almost identical results when comparing ID and OOD schemes, indicating that SSL techniques can learn highly effective representations that generalize well across different OOD datasets. This finding can have major implications for ECG-based arrhythmia detection. Lastly, to further analyze our results, we perform detailed per-disease studies on the performance of the SSL methods on the three datasets.


Subject(s)
Electrocardiography , Self-Management , Humans , Arrhythmias, Cardiac/diagnosis , Knowledge
3.
IEEE Trans Pattern Anal Mach Intell ; 45(11): 13523-13535, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37463083

ABSTRACT

Conditional Normalizing Flows (CNFs) are flexible generative models capable of representing complicated distributions with high dimensionality and large interdimensional correlations, making them appealing for structured output learning. Their effectiveness in modelling multivariates spatio-temporal structured data has yet to be completely investigated. We propose MotionFlow as a novel normalizing flows approach that autoregressively conditions the output distributions on the spatio-temporal input features. It combines deterministic and stochastic representations with CNFs to create a probabilistic neural generative approach that can model the variability seen in high-dimensional structured spatio-temporal data. We specifically propose to use conditional priors to factorize the latent space for the time dependent modeling. We also exploit the use of masked convolutions as autoregressive conditionals in CNFs. As a result, our method is able to define arbitrarily expressive output probability distributions under temporal dynamics in multivariate prediction tasks. We apply our method to different tasks, including trajectory prediction, motion prediction, time series forecasting, and binary segmentation, and demonstrate that our model is able to leverage normalizing flows to learn complicated time dependent conditional distributions.

4.
IEEE Trans Pattern Anal Mach Intell ; 45(1): 264-284, 2023 01.
Article in English | MEDLINE | ID: mdl-35167443

ABSTRACT

Gait recognition is an appealing biometric modality which aims to identify individuals based on the way they walk. Deep learning has reshaped the research landscape in this area since 2015 through the ability to automatically learn discriminative representations. Gait recognition methods based on deep learning now dominate the state-of-the-art in the field and have fostered real-world applications. In this paper, we present a comprehensive overview of breakthroughs and recent developments in gait recognition with deep learning, and cover broad topics including datasets, test protocols, state-of-the-art solutions, challenges, and future research directions. We first review the commonly used gait datasets along with the principles designed for evaluating them. We then propose a novel taxonomy made up of four separate dimensions namely body representation, temporal representation, feature representation, and neural architecture, to help characterize and organize the research landscape and literature in this area. Following our proposed taxonomy, a comprehensive survey of gait recognition methods using deep learning is presented with discussions on their performances, characteristics, advantages, and limitations. We conclude this survey with a discussion on current challenges and mention a number of promising directions for future research in gait recognition.


Subject(s)
Algorithms , Pattern Recognition, Automated , Humans , Pattern Recognition, Automated/methods , Gait , Walking
5.
Sci Rep ; 11(1): 24146, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34921162

ABSTRACT

In the pregnant mother and her fetus, chronic prenatal stress results in entrainment of the fetal heartbeat by the maternal heartbeat, quantified by the fetal stress index (FSI). Deep learning (DL) is capable of pattern detection in complex medical data with high accuracy in noisy real-life environments, but little is known about DL's utility in non-invasive biometric monitoring during pregnancy. A recently established self-supervised learning (SSL) approach to DL provides emotional recognition from electrocardiogram (ECG). We hypothesized that SSL will identify chronically stressed mother-fetus dyads from the raw maternal abdominal electrocardiograms (aECG), containing fetal and maternal ECG. Chronically stressed mothers and controls matched at enrolment at 32 weeks of gestation were studied. We validated the chronic stress exposure by psychological inventory, maternal hair cortisol and FSI. We tested two variants of SSL architecture, one trained on the generic ECG features for emotional recognition obtained from public datasets and another transfer-learned on a subset of our data. Our DL models accurately detect the chronic stress exposure group (AUROC = 0.982 ± 0.002), the individual psychological stress score (R2 = 0.943 ± 0.009) and FSI at 34 weeks of gestation (R2 = 0.946 ± 0.013), as well as the maternal hair cortisol at birth reflecting chronic stress exposure (0.931 ± 0.006). The best performance was achieved with the DL model trained on the public dataset and using maternal ECG alone. The present DL approach provides a novel source of physiological insights into complex multi-modal relationships between different regulatory systems exposed to chronic stress. The final DL model can be deployed in low-cost regular ECG biosensors as a simple, ubiquitous early stress detection and monitoring tool during pregnancy. This discovery should enable early behavioral interventions.


Subject(s)
Databases, Factual , Deep Learning , Electrocardiography , Fetal Diseases/physiopathology , Fetus/physiopathology , Pregnancy Complications/physiopathology , Signal Processing, Computer-Assisted , Stress, Psychological/physiopathology , Adolescent , Adult , Female , Humans , Middle Aged , Pregnancy
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 665-668, 2021 11.
Article in English | MEDLINE | ID: mdl-34891380

ABSTRACT

Accurate torque estimation during dynamic conditions is challenging, yet an important problem for many applications such as robotics, prosthesis control, and clinical diagnostics. Our objective is to accurately estimate the torque generated at the elbow during flexion and extension, under quasi-dynamic and dynamic conditions. High-density surface electromyogram (HD-EMG) signals, acquired from the long head and short head of biceps brachii, brachioradialis, and triceps brachii of five participants are used to estimate the torque generated at the elbow, using a convolutional neural network (CNN). We hypothesise that incorporating the mechanical information recorded by the biodex machine, i.e., position and velocity, can improve the model performance. To investigate the effects of the added data modalities on the model accuracy, models are constructed that combine EMG and position, as well as EMG with both position and velocity. R2 values are improved by 2.35%, 37.50%, and 16.67%, when position and EMG are used as inputs to the CNN models, for isotonic, isokinetic, and dynamic cases, respectively compared to using only EMG. The model performances improves further by 2.29%, 12.12%, and 20.50% for isotonic, isokinetic, and dynamic conditions, when velocity is added with the EMG and position data.


Subject(s)
Elbow Joint , Elbow , Electromyography , Humans , Neural Networks, Computer , Torque
7.
AEM Educ Train ; 5(3): e10605, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34222746

ABSTRACT

BACKGROUND: In resuscitation medicine, effectively managing cognitive load in high-stakes environments has important implications for education and expertise development. There exists the potential to tailor educational experiences to an individual's cognitive processes via real-time physiologic measurement of cognitive load in simulation environments. OBJECTIVE: The goal of this research was to test a novel simulation platform that utilized artificial intelligence to deliver a medical simulation that was adaptable to a participant's measured cognitive load. METHODS: The research was conducted in 2019. Two board-certified emergency physicians and two medical students participated in a 10-minute pilot trial of a novel simulation platform. The system utilized artificial intelligence algorithms to measure cognitive load in real time via electrocardiography and galvanic skin response. In turn, modulation of simulation difficulty, determined by a participant's cognitive load, was facilitated through symptom severity changes of an augmented reality (AR) patient. A postsimulation survey assessed the participants' experience. RESULTS: Participants completed a simulation that successfully measured cognitive load in real time through physiological signals. The simulation difficulty was adapted to the participant's cognitive load, which was reflected in changes in the AR patient's symptoms. Participants found the novel adaptive simulation platform to be valuable in supporting their learning. CONCLUSION: Our research team created a simulation platform that adapts to a participant's cognitive load in real-time. The ability to customize a medical simulation to a participant's cognitive state has potential implications for the development of expertise in resuscitation medicine.

8.
Article in English | MEDLINE | ID: mdl-34129500

ABSTRACT

Driver vigilance estimation is an important task for transportation safety. Wearable and portable brain-computer interface devices provide a powerful means for real-time monitoring of the vigilance level of drivers to help with avoiding distracted or impaired driving. In this paper, we propose a novel multimodal architecture for in-vehicle vigilance estimation from Electroencephalogram and Electrooculogram. To enable the system to focus on the most salient parts of the learned multimodal representations, we propose an architecture composed of a capsule attention mechanism following a deep Long Short-Term Memory (LSTM) network. Our model learns hierarchical dependencies in the data through the LSTM and capsule feature representation layers. To better explore the discriminative ability of the learned representations, we study the effect of the proposed capsule attention mechanism including the number of dynamic routing iterations as well as other parameters. Experiments show the robustness of our method by outperforming other solutions and baseline techniques, setting a new state-of-the-art. We then provide an analysis on different frequency bands and brain regions to evaluate their suitability for driver vigilance estimation. Lastly, an analysis on the role of capsule attention, multimodality, and robustness to noise is performed, highlighting the advantages of our approach.


Subject(s)
Automobile Driving , Brain-Computer Interfaces , Electroencephalography , Electrooculography , Humans , Wakefulness
9.
IEEE Trans Image Process ; 30: 2627-2642, 2021.
Article in English | MEDLINE | ID: mdl-33523811

ABSTRACT

Light field (LF) cameras provide rich spatio-angular visual representations by sensing the visual scene from multiple perspectives and have recently emerged as a promising technology to boost the performance of human-machine systems such as biometrics and affective computing. Despite the significant success of LF representation for constrained facial image analysis, this technology has never been used for face and expression recognition in the wild. In this context, this paper proposes a new deep face and expression recognition solution, called CapsField, based on a convolutional neural network and an additional capsule network that utilizes dynamic routing to learn hierarchical relations between capsules. CapsField extracts the spatial features from facial images and learns the angular part-whole relations for a selected set of 2D sub-aperture images rendered from each LF image. To analyze the performance of the proposed solution in the wild, the first in the wild LF face dataset, along with a new complementary constrained face dataset captured from the same subjects recorded earlier have been captured and are made available. A subset of the in the wild dataset contains facial images with different expressions, annotated for usage in the context of face expression recognition tests. An extensive performance assessment study using the new datasets has been conducted for the proposed and relevant prior solutions, showing that the CapsField proposed solution achieves superior performance for both face and expression recognition tasks when compared to the state-of-the-art.


Subject(s)
Automated Facial Recognition/methods , Deep Learning , Face , Image Processing, Computer-Assisted/methods , Face/anatomy & histology , Face/diagnostic imaging , Facial Expression , Female , Humans , Information Storage and Retrieval , Male
10.
Sensors (Basel) ; 20(17)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867378

ABSTRACT

Accurate and real-time estimation of force from surface electromyogram (EMG) signals enables a variety of applications. We developed and validated new approaches for selecting subsets of high-density (HD) EMG channels for improved and lower-dimensionality force estimation. First, a large dataset was recorded from a number of participants performing isometric contractions in different postures, while simultaneously recording HD-EMG channels and ground-truth force. The EMG signals were acquired from three linear surface electrode arrays, each with eight monopolar channels, and were placed on the long head and short head of the biceps brachii and brachioradialis. After data collection and pre-processing, fast orthogonal search (FOS) was employed for force estimation. To select a subset of channels, principal component analysis (PCA) in the frequency domain and a novel index called the power-correlation ratio (PCR), which maximizes the spectral power while minimizing similarity to other channels, were used. These approaches were compared to channel selection using time-domain PCA. We selected one, two, and three channels per muscle from the original seven differential channels to reduce the redundancy and correlation in the dataset. In the best case, we achieved an approximate improvement of 30% for force estimation while reducing the dimensionality by 57% for a subset of three channels.


Subject(s)
Electromyography , Isometric Contraction , Muscle, Skeletal/physiology , Arm , Humans , Principal Component Analysis
12.
Sensors (Basel) ; 19(19)2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31581563

ABSTRACT

Simulation-based training has been proven to be a highly effective pedagogical strategy. However, misalignment between the participant's level of expertise and the difficulty of the simulation has been shown to have significant negative impact on learning outcomes. To ensure that learning outcomes are achieved, we propose a novel framework for adaptive simulation with the goal of identifying the level of expertise of the learner, and dynamically modulating the simulation complexity to match the learner's capability. To facilitate the development of this framework, we investigate the classification of expertise using biological signals monitored through wearable sensors. Trauma simulations were developed in which electrocardiogram (ECG) and galvanic skin response (GSR) signals of both novice and expert trauma responders were collected. These signals were then utilized to classify the responders' expertise, successive to feature extraction and selection, using a number of machine learning methods. The results show the feasibility of utilizing these bio-signals for multimodal expertise classification to be used in adaptive simulation applications.


Subject(s)
Learning/physiology , Monitoring, Physiologic , Wearable Electronic Devices , Computer Simulation , Electrocardiography/methods , Galvanic Skin Response/physiology , Humans , Machine Learning
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 652-655, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31945982

ABSTRACT

In this paper, a method for selecting channels to improve estimated force using fast orthogonal search (FOS) has been proposed. Surface electromyogram (sEMG) signals acquired from linear surface electrode arrays, placed on the long head and short head of biceps brachii, and brachioradialis during isometric contractions are used to estimate force induced at the wrist using the FOS algorithm. The method utilizes principle component analysis (PCA) in the frequency domain to select the channels with the highest contribution to the first principal component (PC). Our analysis demonstrates that our proposed method is capable of reducing the dimensionality of the data (the number of channels was reduced from 21 to 9) while improving the accuracy of the estimated force.


Subject(s)
Principal Component Analysis , Arm , Electromyography , Humans , Isometric Contraction , Muscle, Skeletal
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 698-701, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31945993

ABSTRACT

In this paper, extracted features in time and frequency domain, from high-density surface electromyogram (HD-sEMG) signals acquired from the long head and short head of biceps brachii, and brachioradialis during isometric elbow flexion are used to estimate force induced at the wrist using an artificial neural network (ANN). Different hidden layer sizes were considered to investigate its effect on the model accuracy. Also, we applied two dimensionality reduction techniques, principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), on the feature set and investigated their effects on force estimation accuracy.


Subject(s)
Electromyography , Arm , Elbow Joint , Humans , Isometric Contraction , Muscle, Skeletal
16.
Biomed Pharmacother ; 89: 1216-1226, 2017 May.
Article in English | MEDLINE | ID: mdl-28320088

ABSTRACT

Cervical cancer accounts for the second most frequent cancer and also third leading cause of cancer mortality (15%) among women worldwide. The major problems of chemotherapeutic treatment in cervical cancer are non-specific cytotoxicity and drug resistance. Plant-derived products, known as natural therapies, have been used for thousands of years in cancer treatment with a very low number of side effects. Allium atroviolaceum is a species in the genus Allium and Liliaceae family, which could prove to have beneficial effects on cancer treatment, although there is a lack of corresponding attention. The methanolic extract from the A.atroviolaceum flower displayed marked anticancer activity on HeLa human cervix carcinoma cells with much lower cytotoxic effects on normal cells (3T3). The A.atroviolaceum extract induced apoptosis, confirmed by cell cycle arrest at the sub-G0 (apoptosis) phase, characteristic morphological changes, evident DNA fragmentation, observed by fluorescent microscope, and early and late apoptosis detection by Annexin V. Furthermore, down-regulation of Bcl-2 and activation of caspase-9 and -3 strongly indicated that the mitochondrial pathway was involved in the apoptosis signal pathway. Moreover, combination of A.atroviolaceum extract with doxorubicin revealed a significant reduction of IC50 and led to a synergistic effect. In summary, A.atroviolaceum displayed a significant anti-tumour effect through apoptosis induction in HeLa cells, suggesting that the A.atroviolaceum flower might have therapeutic potential against cervix carcinoma.


Subject(s)
Allium/chemistry , Apoptosis/drug effects , Caspase 3/metabolism , Down-Regulation/drug effects , Flowers/chemistry , Plant Extracts/pharmacology , bcl-2-Associated X Protein/metabolism , Annexin A5/metabolism , Antineoplastic Agents/pharmacology , Caspase 9/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Fragmentation/drug effects , HeLa Cells , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Signal Transduction/drug effects
17.
Front Pharmacol ; 8: 5, 2017.
Article in English | MEDLINE | ID: mdl-28197098

ABSTRACT

Natural products are considered potent sources for novel drug discovery and development. The multiple therapeutic effects of natural compounds in traditional medicine motivate us to evaluate the cytotoxic activity of bulb of Allium atroviolaceum in MCF7 and MDA-MB-231, HeLa and HepG2 cell lines. The bulb methanol extract of A. atroviolaceum was found to be an active cell proliferation inhibitor at the time and dose dependent manner. Determination of DNA content by flow cytometry demonstrated S and G2/M phase arrest of MCF-7 cell, correlated to Cdk1 downregulation, S phase arrest in MDA-MB-231 which is p53 and Cdk1-dependent, sub-G0 cell cycle arrest in HeLa aligned with Cdk1 downregulation, G0/G1, S, G2/M phase arrest in HepG2 which is p53-dependent. Apoptosis as the mechanism of cell death was confirmed by morphology study, caspases activity assay, as well as apoptosis related gene expression, Bcl-2. Caspase-8, -9, and -3 activity with downregulation of Bcl-2 illustrated occurrence of both intrinsic and extrinsic pathways in MCF7, while caspase-3 and -8 activity revealed extrinsic pathway of apoptosis, although Bcl-2 downregulated. In HeLa cells, the activity of caspase-9 and -3 and downregulation of Bcl-2 shows intrinsic pathway or mitochondrial pathway, whereas HepG2 shows caspase independent apoptosis. Further, the combination of the extract with tamoxifen against MCF7 and MDA-MB-231 and combination with doxorubicin against HeLa and HeG2 demonstrated synergistic effect in most concentrations, suggests that the bulb of A. atroviolaceum may be useful for the treatment of cancer lonely or in combination with other drugs.

18.
Biomed Res Int ; 2016: 1845638, 2016.
Article in English | MEDLINE | ID: mdl-27781209

ABSTRACT

Endothelial dysfunction appears to be an early sign indicating vascular damage and predicts the progression of atherosclerosis and cardiovascular disorders. Extensive clinical and experimental evidence suggests that endothelial dysfunction occurs in Type 2 Diabetes Mellitus (T2DM) and prediabetes patients. This study was carried out with an aim to appraise the expression levels in the peripheral blood of 84 genes related to endothelial cells biology in patients with diagnosed T2DM or prediabetes, trying to identify new genes whose expression might be changed under these pathological conditions. The study covered a total of 45 participants. The participants were divided into three groups: group 1, patients with T2DM; group 2, patients with prediabetes; group 3, control group. The gene expression analysis was performed using the Endothelial Cell Biology RT2 Profiler PCR Array. In the case of T2DM, 59 genes were found to be upregulated, and four genes were observed to be downregulated. In prediabetes patients, increased expression was observed for 49 genes, with two downregulated genes observed. Our results indicate that diabetic and prediabetic conditions change the expression levels of genes related to endothelial cells biology and, consequently, may increase the risk for occurrence of endothelial dysfunction.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Endothelial Cells/metabolism , Prediabetic State/genetics , Prediabetic State/metabolism , Transcriptome/genetics , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Down-Regulation/genetics , Female , Humans , Male , Middle Aged , Up-Regulation/genetics
19.
Biomed Res Int ; 2016: 6712529, 2016.
Article in English | MEDLINE | ID: mdl-27413750

ABSTRACT

Background. Atrial natriuretic peptide (ANP) considerably influences blood pressure regulation through water and sodium homoeostasis. Several of the studies have utilized anonymous genetic polymorphic markers and made inconsequent claims about the ANP relevant disorders. Thus, we screened Insertion/Deletion (ID) and G191A polymorphisms of ANP to discover sequence variations with potential functional significance and to specify the linkage disequilibrium pattern between polymorphisms. The relationships of detected polymorphisms with EH with or without Type 2 Diabetes Mellitus (T2DM) status were tested subsequently. Method. ANP gene polymorphisms (I/D and A191G) were specified utilizing mutagenically separated Polymerase Chain Reaction (PCR) in 320 subjects including 163 EH case subjects and 157 controls. Result. This case-control study discovered a significant association between I/D polymorphisms of ANP gene in EH patient without T2DM. However, the study determined no association between G191A polymorphisms of ANP in EH with or without T2DM. In addition, sociodemographic factors in the case and healthy subjects exhibited strong differences (P < 0.05). Conclusion. As a risk factor, ANP gene polymorphisms may affect hypertension. Despite the small sample size in this study, it is the first research assessing the ANP gene polymorphisms in both EH and T2DM patients among Malaysian population.


Subject(s)
Atrial Natriuretic Factor/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Hypertension/genetics , Aged , Diabetes Mellitus, Type 2/pathology , Essential Hypertension , Female , Genetic Association Studies , Genotype , Humans , Hypertension/pathology , Malaysia , Male , Middle Aged , Polymorphism, Single Nucleotide
20.
J Diabetes Res ; 2016: 8219543, 2016.
Article in English | MEDLINE | ID: mdl-27314050

ABSTRACT

With-no-lysine (K) Kinase-4 (WNK4) consisted of unique serine and threonine protein kinases, genetically associated with an autosomal dominant form of hypertension. Argumentative consequences have lately arisen on the association of specific single nucleotide polymorphisms of WNK4 gene and essential hypertension (EHT). The aim of this study was to determine the association of Ala589Ser polymorphism of WNK4 gene with essential hypertensive patients in Malaysia. WNK4 gene polymorphism was specified utilizing mutagenically separated polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) method in 320 subjects including 163 cases and 157 controls. Close relation between Ala589Ser polymorphism and elevated systolic and diastolic blood pressure (SBP and DBP) was recognized. Sociodemographic factors including body mass index (BMI), age, the level of fasting blood sugar (FBS), low density lipoprotein (LDL), and triglyceride (TG) in the cases and healthy subjects exhibited strong differences (p < 0.05). The distribution of allele frequency and genotype of WNK4 gene Ala589Ser polymorphism showed significant differences (p < 0.05) between EHT subjects with or without type 2 diabetes mellitus (T2DM) and normotensive subjects, statistically. The WNK4 gene variation influences significantly blood pressure increase. Ala589Ser probably has effects on the enzymic activity leading to enhanced predisposition to the disorder.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Hypertension/genetics , Protein Serine-Threonine Kinases/genetics , Adult , Aged , Asian People/genetics , Case-Control Studies , Essential Hypertension , Female , Humans , Malaysia , Male , Middle Aged , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...