Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36500265

ABSTRACT

In this paper, evidence is provided that the model reaction of aqueous dihydroxyacetone (DHA) conversion is as sensitive to the TiO2 catalysts' basicity as to their acidity. Two parallel pathways transformed DHA: while the pathway catalyzed by Lewis acid sites gave pyruvaldehyde (PA) and lactic acid (LA), the base-catalyzed route afforded fructose. This is demonstrated on a series of six commercial TiO2 samples and further confirmed by using two reference catalysts: niobic acid (NbOH), an acid catalyst, and a hydrotalcite (MgAlO), a basic catalyst. The original acid-base properties of the six commercial TiO2 with variable structure and texture were investigated first by conventional methods in gas phase (FTIR or microcalorimetry of pyridine, NH3 and CO2 adsorption). A linear relationship between the initial rates of DHA condensation into hexoses and the total basic sites densities is highlighted accounting for the water tolerance of the TiO2 basic sites whatever their strength. Rutile TiO2 samples were the most basic ones. Besides, only the strongest TiO2 Lewis acid sites were shown to be water tolerant and efficient for PA and LA formation.


Subject(s)
Dihydroxyacetone , Water , Dihydroxyacetone/chemistry , Lewis Acids , Catalysis , Adsorption , Lactic Acid/chemistry
2.
Molecules ; 26(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34833888

ABSTRACT

This review article highlights part of the research activity of the C'Durable team at IRCELYON in the field of sustainable chemistry. This review presents a landscape of the work performed on the valorization of lignocellulosic biopolymers. These studies intend to transform cellulose, hemicellulose and lignin into valuable molecules. The methodology usually consists in evaluating the behavior of the biopolymers in the absence of catalyst under various conditions (solvent, temperature), and then to assess the influence of a catalyst, most often a heterogeneous catalyst, on the reactivity. The most significant results obtained on the upgrading of cellulose and lignin, which have been mainly investigated in the team, will be presented with an opening on studies involving raw lignocellulose.


Subject(s)
Biopolymers/chemistry , Green Chemistry Technology/methods , Lignin/chemistry , Biomass , Biopolymers/analysis , Catalysis , Cellulose/chemistry , Green Chemistry Technology/trends , Polysaccharides/chemistry , Solvents/analysis , Wood/chemistry
3.
ChemSusChem ; 10(12): 2612-2617, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28464524

ABSTRACT

This article reports a detailed study on the reactivity of levulinic acid and cellulose with 1-butene and iso-butene for the catalytic formation of sec- and tert-butyl levulinates. The influence of catalyst type and various solvent conditions have been investigated to assess the potential of a sustainable transformation. A very simple and efficient procedure was discovered by using reusable Amberlyst-15 in the absence of solvent to form, from levulinic acid and iso-butene, tert-butyl levulinate (70 % yield), a compound very difficult to prepare by other means. sec-Butyl levulinate (66 % yield) was obtained by using Amberlyst-15 in γ-butyrolactone as a biosourced solvent. The original procedure was also extended notably by directly using cellulose as a reactant. In the presence of a catalytic amount of H2 SO4 , it was possible to form sec-butyl levulinate (19 % yield) from 1-butene in a more efficient way than by using the alcohol as an esterifying agent.


Subject(s)
Alkenes/chemistry , Biomass , Levulinic Acids/chemistry , Levulinic Acids/chemical synthesis , Catalysis , Cellulose/chemistry , Chemistry Techniques, Synthetic , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...