Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Article in English | MEDLINE | ID: mdl-31517177

ABSTRACT

BACKGROUND: Next-generation sequencing (NGS) for tumor molecular profiling can reveal secondary germline pathogenic and likely pathogenic variants (LPV/PV). The American College of Medical Genetics (ACMG) recommends return of secondary results for a subset of 59 genes, but other genes with evidence of clinical utility are emerging. We previously reported that 4.3% of patients who underwent NGS of a targeted panel of 201 genes had LPV/PV based on the ACMG list. Here we report the frequency of additional germline cancer-related gene variants and discuss their clinical utility. PATIENTS AND METHODS: Matched tumor and germline DNA NGS of a targeted panel of 201 genes was performed in a research laboratory on samples from 1000 patients with advanced or metastatic solid tumors enrolled in a molecular testing protocol (NCT01772771). The frequency of germline LPV/PV in 54 cancer-related genes, beyond the genes in ACMG list, were analyzed. RESULTS: Among 1000 patients who underwent tumor/normal DNA sequencing, 46 (4.6%) were found to have a germline LPV/PV in the following genes: AR-(5), ATM-(4), BAP1-(1), CDH1-(1), CDKN2A-(1), CHEK1-(2), CHEK2-(10), EGFR-(1), ERCC3-(4), ERCC5-(1), HNF1B-(1), HRAS-(1), MITF-(4), MLL3-(1), NF1-(3), PKHD1-(4), PTCH1-(1), and SMARCA4-(1). Thus, a total 8.7% of patients had an LPV/PV with 2 patients having 2 concomitant germline LPV/PV. Five mutations in high-penetrance hereditary cancer predisposition genes were selected to be returned to patients or their representatives: BAP1, CDH1, CDKN2A, EGFR, and SMARCA4. CONCLUSIONS: Broader genomic testing is likely to identify additional secondary pathogenic germline alterations, some with potential clinical utility for return to patients and their relatives. The recommended genes for which germline results should be returned are continually changing, warranting continued study.

2.
Br J Dermatol ; 180(2): 404-408, 2019 02.
Article in English | MEDLINE | ID: mdl-29897634

ABSTRACT

Spitzoid neoplasms pose diagnostic difficulties because their morphology is not consistently predictive of their biological potential. Recent advances in the molecular characterization of these tumours provides a framework by which they can now begin to be categorized. In particular, spitzoid lesions with ALK rearrangement have been specifically associated with a characteristic plexiform growth pattern of intersecting fascicles of amelanotic spindled melanocytes. We report the case of an 87-year-old man with a 3-cm nodule on his mid-upper back comprised of an intradermal proliferation of fusiform amelanotic melanocytes arranged in intersecting fascicles with occasional peritumoral clefts. Immunohistochemical studies demonstrated diffuse, strong expression of SOX10 and S100 by the tumour cells and diffuse, weak-to-moderate cytoplasmic positivity for anaplastic lymphoma kinase (ALK), suggestive of ALK rearrangement. Fluorescence in situ hybridization revealed no ALK rearrangements but instead revealed at least three intact ALK signals in 36% of the tumour cells, confirming ALK copy number gain. To our knowledge, this is the first reported case of a plexiform spitzoid neoplasm exhibiting ALK copy number gain instead of ALK rearrangement. This case suggests that ALK copy number gain is a novel mechanism of ALK activation but with the same characteristic histopathological growth pattern seen among ALK-rearranged spitzoid neoplasms.


Subject(s)
Anaplastic Lymphoma Kinase/genetics , DNA Copy Number Variations , Nevus, Epithelioid and Spindle Cell/genetics , Skin Neoplasms/genetics , Aged, 80 and over , Back , Humans , In Situ Hybridization, Fluorescence , Male , Nevus, Epithelioid and Spindle Cell/pathology , Skin/pathology , Skin Neoplasms/pathology
3.
Ann Oncol ; 27(5): 795-800, 2016 05.
Article in English | MEDLINE | ID: mdl-26787237

ABSTRACT

BACKGROUND: Next-generation sequencing in cancer research may reveal germline variants of clinical significance. We report patient preferences for return of results and the prevalence of incidental pathogenic germline variants (PGVs). PATIENTS AND METHODS: Targeted exome sequencing of 202 genes was carried out in 1000 advanced cancers using tumor and normal DNA in a research laboratory. Pathogenic variants in 18 genes, recommended for return by The American College of Medical Genetics and Genomics, as well as PALB2, were considered actionable. Patient preferences of return of incidental germline results were collected. Return of results was initiated with genetic counseling and repeat CLIA testing. RESULTS: Of the 1000 patients who underwent sequencing, 43 had likely PGVs: APC (1), BRCA1 (11), BRCA2 (10), TP53 (10), MSH2 (1), MSH6 (4), PALB2 (2), PTEN (2), TSC2 (1), and RB1 (1). Twenty (47%) of 43 variants were previously known based on clinical genetic testing. Of the 1167 patients who consented for a germline testing protocol, 1157 (99%) desired to be informed of incidental results. Twenty-three previously unrecognized mutations identified in the research environment were confirmed with an orthogonal CLIA platform. All patients approached decided to proceed with formal genetic counseling; in all cases where formal genetic testing was carried out, the germline variant of concern validated with clinical genetic testing. CONCLUSIONS: In this series, 2.3% patients had previously unrecognized pathogenic germline mutations in 19 cancer-related genes. Thus, genomic sequencing must be accompanied by a plan for return of germline results, in partnership with genetic counseling.


Subject(s)
Germ-Line Mutation/genetics , Neoplasm Proteins/genetics , Neoplasms/genetics , Exome/genetics , Genetic Counseling , High-Throughput Nucleotide Sequencing , Humans , Neoplasms/diagnosis , Neoplasms/pathology
4.
Genet Mol Res ; 7(2): 295-304, 2008 Apr 08.
Article in English | MEDLINE | ID: mdl-18551395

ABSTRACT

Cadherins are cell-to-cell adhesion molecules that play an important role in the establishment of adherent-type junctions by mediating calcium-dependent cellular interactions. The CDH1 gene encodes the transmembrane glycoprotein E-cadherin which is important in maintaining homophilic cell-cell adhesion in epithelial tissues. E-cadherin interacts with catenin proteins to maintain tissue architecture. Structural defects or loss of expression of E-cadherin have been reported as a common feature in several human cancer types. This study aimed to evaluate the expression of E-cadherin and their correlation with clinical features in microdissected brain tumor samples from 81 patients, divided into 62 astrocytic tumors grades I to IV and 19 medulloblastomas, and from 5 white matter non-neoplasic brain tissue samples. E-cadherin (CDH1) gene expression was analyzed by quantitative real-time polymerase chain reaction. Mann-Whitney, Kruskal-Wallis, Kaplan-Meir, and log-rank tests were performed for statistical analyses. We observed a decrease in expression among pathological grades of neuroepithelial tumors. Non-neoplasic brain tissue showed a higher expression level of CDH1 gene than did neuroepithelial tumors. Expression of E-cadherin gene was higher in astrocytic than embryonal tumors (P = 0.0168). Low-grade malignancy astrocytomas (grades I-II) showed higher CDH1 expression than did high-grade malignancy astrocytomas (grades III-IV) and medulloblastomas (P < 0.0001). Non-neoplasic brain tissue showed a higher expression level of CDH1 gene than grade I malignancy astrocytomas, considered as benign tumors (P = 0.0473). These results suggest that a decrease in E-cadherin gene expression level in high-grade neuroepithelial tumors may be a hallmark of malignancy in dedifferentiated tumors and that it may be possibly correlated with their progression and dissemination.


Subject(s)
Cadherins/genetics , Gene Expression Profiling , Neoplasms, Neuroepithelial/genetics , Adolescent , Adult , Brain/metabolism , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Neoplasms, Neuroepithelial/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction
5.
Genet. mol. res. (Online) ; 7(2): 295-304, 2008.
Article in English | LILACS | ID: lil-641010

ABSTRACT

Cadherins are cell-to-cell adhesion molecules that play an important role in the establishment of adherent-type junctions by mediating calcium-dependent cellular interactions. The CDH1 gene encodes the transmembrane glycoprotein E-cadherin which is important in maintaining homophilic cell-cell adhesion in epithelial tissues. E-cadherin interacts with catenin proteins to maintain tissue architecture. Structural defects or loss of expression of E-cadherin have been reported as a common feature in several human cancer types. This study aimed to evaluate the expression of E-cadherin and their correlation with clinical features in microdissected brain tumor samples from 81 patients, divided into 62 astrocytic tumors grades I to IV and 19 medulloblastomas, and from 5 white matter non-neoplasic brain tissue samples. E-cadherin (CDH1) gene expression was analyzed by quantitative real-time polymerase chain reaction. Mann-Whitney, Kruskal-Wallis, Kaplan-Meir, and log-rank tests were performed for statistical analyses. We observed a decrease in expression among pathological grades of neuroepithelial tumors. Non-neoplasic brain tissue showed a higher expression level of CDH1 gene than did neuroepithelial tumors. Expression of E-cadherin gene was higher in astrocytic than embryonal tumors (P = 0.0168). Low-grade malignancy astrocytomas (grades I-II) showed higher CDH1 expression than did high-grade malignancy astrocytomas (grades III-IV) and medulloblastomas (P < 0.0001). Non-neoplasic brain tissue showed a higher expression level of CDH1 gene than grade I malignancy astrocytomas, considered as benign tumors (P = 0.0473). These results suggest that a decrease in E-cadherin gene expression level in high-grade neuroepithelial tumors may be a hallmark of malignancy in dedifferentiated tumors and that it may be possibly correlated with their progression and dissemination.


Subject(s)
Humans , Adolescent , Adult , Middle Aged , Cadherins/genetics , Gene Expression Profiling , Neoplasms, Neuroepithelial/genetics , Cerebrum/metabolism , Gene Expression Regulation, Neoplastic , Neoplasms, Neuroepithelial/pathology , Reverse Transcriptase Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
Curr Pharm Biotechnol ; 8(2): 105-13, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17430159

ABSTRACT

The advances in the cure rates observed in the oncology field in the past decades were not fully assembled by primary brain tumors. In this heterogeneous group of diseases, resistance to either chemotherapy or radiotherapy still is a major problem to be addressed. Several genetic and epigenetic events may directly influence the response to treatment in these tumors. Throughout recent discoveries, drug resistance in brain tumors was better understood as a final product of different and complexes pathways that interact and modulate cell performance to treatment. The last years experienced a new paradigm in the way brain tumor drug-resistance genes are elected out of the vast human genomic universe. In the former era, models of cell resistance that were documented on solid tumors other than brain were investigated at the central nervous system's counterpart. Nowadays, genomic-based hypothesis generation, supported by modern genetic technique tolls, seem effective in revealing new candidate-genes that might confer the resistance phenotype. Nevertheless, new treatment approaches and novel drugs based on the pharmacogenomic resistance profile, particularly for brain tumors, are just starting to become a reality for clinical purposes.


Subject(s)
Antineoplastic Agents/administration & dosage , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic/genetics , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/prevention & control , Epigenesis, Genetic/drug effects , Genetic Predisposition to Disease/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...