Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(15): 4588-4594, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38587406

ABSTRACT

Effective thawing of cryopreserved samples requires rapid and uniform heating. This is achievable through nanowarming, an approach that heats magnetic nanoparticles by using alternating magnetic fields. Here we demonstrate the synthesis and surface modification of magnetic nanoclusters for efficient nanowarming. Magnetite (Fe3O4) nanoclusters with an optimal diameter of 58 nm exhibit a high specific absorption rate of 1499 W/g Fe under an alternating magnetic field at 43 kA/m and 413 kHz, more than twice that of commercial iron oxide cores used in prior nanowarming studies. Surface modification with a permeable resorcinol-formaldehyde resin (RFR) polymer layer significantly enhances their colloidal stability in complex cryoprotective solutions, while maintaining their excellent heating capacity. The Fe3O4@RFR nanoparticles achieved a high average heating rate of 175 °C/min in cryopreserved samples at a concentration of 10 mg Fe/mL and were successfully applied in nanowarming porcine iliac arteries, highlighting their potential for enhancing the efficacy of cryopreservation.


Subject(s)
Heating , Magnetics , Swine , Animals , Cryopreservation , Ferrosoferric Oxide , Magnetic Fields
2.
Langmuir ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38318799

ABSTRACT

There is a critical need for sorting complex materials, such as pancreatic islets of Langerhans, exocrine acinar tissues, and embryoid bodies. These materials are cell clusters, which have highly heterogeneous physical properties (such as size, shape, morphology, and deformability). Selecting such materials on the basis of specific properties can improve clinical outcomes and help advance biomedical research. In this work, we focused on sorting one such complex material, human stem cell-derived ß cell clusters (SC-ß cell clusters), by size. For this purpose, we developed a microfluidic device in which an image detection system was coupled to an actuation mechanism based on traveling surface acoustic waves (TSAWs). SC-ß cell clusters of varying size (∼100-500 µm in diameter) were passed through the sorting device. Inside the device, the size of each cluster was estimated from their bright-field images. After size identification, larger clusters, relative to the cutoff size for separation, were selectively actuated using TSAW pulses. As a result of this selective actuation, smaller and larger clusters exited the device from different outlets. At the current sample dilutions, the experimental sorting efficiency ranged between 78% and 90% for a separation cutoff size of 250 µm, yielding sorting throughputs of up to 0.2 SC-ß cell clusters/s using our proof-of-concept design. The biocompatibility of this sorting technique was also established, as no difference in SC-ß cell cluster viability due to TSAW pulse usage was found. We conclude the proof-of-concept sorting work by discussing a few ways to optimize sorting of SC-ß cell clusters for potentially higher sorting efficiency and throughput. This sorting technique can potentially help in achieving a better distribution of islets for clinical islet transplantation (a potential cure for type 1 diabetes). Additionally, the use of this technique for sorting islets can help in characterizing islet biophysical properties by size and selecting suitable islets for improved islet cryopreservation.

3.
Adv Sci (Weinh) ; 11(3): e2303317, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38018294

ABSTRACT

Vitrification-based cryopreservation is a promising approach to achieving long-term storage of biological systems for maintaining biodiversity, healthcare, and sustainable food production. Using the "cryomesh" system achieves rapid cooling and rewarming of biomaterials, but further improvement in cooling rates is needed to increase biosystem viability and the ability to cryopreserve new biosystems. Improved cooling rates and viability are possible by enabling conductive cooling through cryomesh. Conduction-dominated cryomesh improves cooling rates from twofold to tenfold (i.e., 0.24 to 1.2 × 105  °C min-1 ) in a variety of biosystems. Higher thermal conductivity, smaller mesh wire diameter and pore size, and minimizing the nitrogen vapor barrier (e.g., vertical plunging in liquid nitrogen) are key parameters to achieving improved vitrification. Conduction-dominated cryomesh successfully vitrifies coral larvae, Drosophila embryos, and zebrafish embryos with improved outcomes. Not only a theoretical foundation for improved vitrification in µm to mm biosystems but also the capability to scale up for biorepositories and/or agricultural, aquaculture, or scientific use are demonstrated.


Subject(s)
Vitrification , Zebrafish , Animals , Cryopreservation , Cold Temperature , Nitrogen
4.
Cryobiology ; 114: 104842, 2024 03.
Article in English | MEDLINE | ID: mdl-38158172

ABSTRACT

In clinical practice, donor hearts are transported on ice prior to transplant and discarded if cold ischemia time exceeds ∼5 h. Methods to extend these preservation times are critically needed, and ideally, this storage time would extend indefinitely, enabling improved donor-to-patient matching, organ utilization, and immune tolerance induction protocols. Previously, we demonstrated successful vitrification and rewarming of whole rat hearts without ice formation by perfusion-loading a cryoprotective agent (CPA) solution prior to vitrification. However, these hearts did not recover any beating even in controls with CPA loading/unloading alone, which points to the chemical toxicity of the cryoprotective solution (VS55 in Euro-Collins carrier solution) as the likely culprit. To address this, we compared the toxicity of another established CPA cocktail (VEG) to VS55 using ex situ rat heart perfusion. The CPA exposure time was 150 min, and the normothermic assessment time was 60 min. Using Celsior as the carrier, we observed partial recovery of function (atria-only beating) for both VS55 and VEG. Upon further analysis, we found that the VEG CPA cocktail resulted in 50 % lower LDH release than VS55 (N = 4, p = 0.017), suggesting VEG has lower toxicity than VS55. Celsior was a better carrier solution than alternatives such as UW, as CPA + Celsior-treated hearts spent less time in cardiac arrest (N = 4, p = 0.029). While we showed substantial improvement in cardiac function after exposure to vitrifiable concentrations of CPA by improving both the CPA and carrier solution formulation, further improvements will be required before we achieve healthy cryopreserved organs for transplant.


Subject(s)
Heart Transplantation , Organ Preservation Solutions , Animals , Rats , Cryopreservation/methods , Cryoprotective Agents/toxicity , Heart Transplantation/methods , Ice , Organ Preservation Solutions/pharmacology , Tissue Donors
5.
Nat Commun ; 14(1): 3407, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296144

ABSTRACT

Banking cryopreserved organs could transform transplantation into a planned procedure that more equitably reaches patients regardless of geographical and time constraints. Previous organ cryopreservation attempts have failed primarily due to ice formation, but a promising alternative is vitrification, or the rapid cooling of organs to a stable, ice-free, glass-like state. However, rewarming of vitrified organs can similarly fail due to ice crystallization if rewarming is too slow or cracking from thermal stress if rewarming is not uniform. Here we use "nanowarming," which employs alternating magnetic fields to heat nanoparticles within the organ vasculature, to achieve both rapid and uniform warming, after which the nanoparticles are removed by perfusion. We show that vitrified kidneys can be cryogenically stored (up to 100 days) and successfully recovered by nanowarming to allow transplantation and restore life-sustaining full renal function in nephrectomized recipients in a male rat model. Scaling this technology may one day enable organ banking for improved transplantation.


Subject(s)
Kidney Transplantation , Vitrification , Male , Rats , Animals , Cryopreservation/methods , Kidney , Organ Preservation/methods
6.
Ann Biomed Eng ; 51(10): 2216-2228, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37351756

ABSTRACT

Vitrification could enable long-term organ preservation, but only after loading high-concentration, potentially toxic cryoprotective agents (CPAs) by perfusion. In this paper, we combine a two-compartment Krogh cylinder model with a toxicity cost function to theoretically optimize the loading of CPA (VMP) in rat kidneys as a model system. First, based on kidney perfusion experiments, we systematically derived the parameters for a CPA transport loading model, including the following: Vb = 86.0% (ra = 3.86 µm), Lp = 1.5 × 10-14 m3/(N·s), ω = 7.0 × 10-13 mol/(N·s), σ = 0.10. Next, we measured the toxicity cost function model parameters as α = 3.12 and ß = 9.39 × 10-6. Combining these models, we developed an improved kidney-loading protocol predicted to achieve vitrification while minimizing toxicity. The optimized protocol resulted in shorter exposure (25 min or 18.5% less) than the gold standard kidney-loading protocol for VMP, which had been developed based on decades of empirical practice. After testing both protocols on rat kidneys, we found comparable physical and biological outcomes. While we did not dramatically reduce toxicity, we did reduce the time. As our approach is now validated, it can be used on other organs lacking defined toxicity data to reduce CPA exposure time and provide a rapid path toward developing CPA perfusion protocols for other organs and CPAs.


Subject(s)
Cryopreservation , Vitrification , Rats , Animals , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Organ Preservation , Perfusion
8.
Ann Biomed Eng ; 51(3): 566-577, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36183025

ABSTRACT

Liver cryopreservation has the potential to enable indefinite organ banking. This study investigated vitrification-the ice-free cryopreservation of livers in a glass-like state-as a promising alternative to conventional cryopreservation, which uniformly fails due to damage from ice formation or cracking. Our unique "nanowarming" technology, which involves perfusing biospecimens with cryoprotective agents (CPAs) and silica-coated iron oxide nanoparticles (sIONPs) and then, after vitrification, exciting the nanoparticles via radiofrequency waves, enables rewarming of vitrified specimens fast enough to avoid ice formation and uniformly enough to prevent cracking from thermal stresses, thereby addressing the two main failures of conventional cryopreservation. This study demonstrates the ability to load rat livers with both CPA and sIONPs by vascular perfusion, cool them rapidly to an ice-free vitrified state, and rapidly and homogenously rewarm them. While there was some elevation of liver enzymes (Alanine Aminotransferase) and impaired indocyanine green (ICG) excretion, the nanowarmed livers were viable, maintained normal tissue architecture, had preserved vascular endothelium, and demonstrated hepatocyte and organ-level function, including production of bile and hepatocyte uptake of ICG during normothermic reperfusion. These findings suggest that cryopreservation of whole livers via vitrification and nanowarming has the potential to achieve organ banking for transplant and other biomedical applications.


Subject(s)
Cryopreservation , Vitrification , Rats , Cryoprotective Agents , Hepatocytes , Liver , Animals
9.
Nat Commun ; 13(1): 6017, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36224179

ABSTRACT

Cryopreservation by vitrification has far-reaching implications. However, rewarming techniques that are rapid and scalable (both in throughput and biosystem size) for low concentrations of cryoprotective agent (CPA) for reduced toxicity are lacking, limiting the potential for translation. Here, we introduce a joule heating-based platform technology, whereby biosystems are rapidly rewarmed by contact with an electrical conductor that is fed a voltage pulse. We demonstrate successful cryopreservation of three model biosystems with thicknesses across three orders of magnitude, including adherent cells (~4 µm), Drosophila melanogaster embryos (~50 µm) and rat kidney slices (~1.2 mm) using low CPA concentrations (2-4 M). Using tunable voltage pulse widths from 10 µs to 100 ms, numerical simulation predicts that warming rates from 5 × 104 to 6 × 108 °C/min can be achieved. Altogether, our results present a general solution to the cryopreservation of a broad spectrum of cellular, organismal and tissue-based biosystems.


Subject(s)
Cryoprotective Agents , Vitrification , Animals , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Drosophila melanogaster , Heating , Rats
10.
ACS Appl Mater Interfaces ; 14(37): 41659-41670, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36070361

ABSTRACT

Deep-seated tumors of the liver, brain, and other organ systems often recur after initial surgical, chemotherapeutic, radiation, or focal treatments. Repeating these treatments is often invasive and traumatic. We propose an iron oxide nanoparticle (IONP)-enhanced precipitating hydrophobic injectable liquid (PHIL, MicroVention inc.) embolic as a localized dual treatment implant for nutrient deprivation and multiple repeatable thermal ablation. Following a single injection, multiple thermal treatments can be repeated as needed, based on monitoring of tumor growth/recurrence. Herein we show the ability to create an injectable stable PHIL-IONP solution, monitor deposition of the PHIL-IONP precipitate dispersion by µCT, and gauge the IONP distribution within the embolic by magnetic resonance imaging. Once precipitated, the implant could be heated to reach therapeutic temperatures >8 °C for thermal ablation (clinical temperature of ∼45 °C), in a model disk and a 3D tumor bed model. Heat output was not affected by physiological conditions, multiple heating sessions, or heating at intervals over a 1 month duration. Further, in ex vivo mice hind-limb tumors, we could noninvasively heat the embolic to an "ablative" temperature elevation of 17 °C (clinically 54 °C) in the first 5 min and maintain the temperature rise over +8 °C (clinically a temperature of 45 °C) for longer than 15 min.


Subject(s)
Embolization, Therapeutic , Neoplasms , Animals , Dimethyl Sulfoxide , Embolization, Therapeutic/methods , Heating , Magnetic Iron Oxide Nanoparticles , Mice , Neoplasms/drug therapy , Polyvinyls/therapeutic use
11.
Technology (Singap World Sci) ; 2(3): 214-228, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25379513

ABSTRACT

Aggregation is a known consequence of nanoparticle use in biology and medicine; however, nanoparticle characterization is typically performed under the pretext of well-dispersed, aqueous conditions. Here, we systematically characterize the effects of aggregation on the alternating magnetic field induced heating and magnetic resonance (MR) imaging performance of iron oxide nanoparticles (IONPs) in non-ideal biological systems. Specifically, the behavior of IONP aggregates composed of ~10 nm primary particles, but with aggregate hydrodynamic sizes ranging from 50 nm to 700 nm, was characterized in phosphate buffered saline and fetal bovine serum suspensions, as well as in gels and cells. We demonstrate up to a 50% reduction in heating, linked to the extent of aggregation. To quantify aggregate morphology, we used a combination of hydrodynamic radii distribution, intrinsic viscosity, and electron microscopy measurements to describe the aggregates as quasifractal entities with fractal dimensions in the 1.8-2.0 range. Importantly, we are able to correlate the observed decrease in magnetic field induced heating with a corresponding decrease in longitudinal relaxation rate (R1) in MR imaging, irrespective of the extent of aggregation. Finally, we show in vivo proof-of-principle use of this powerful new imaging method, providing a critical tool for predicting heating in clinical cancer hyperthermia.

12.
J Biomech Eng ; 135(2): 021002, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23445047

ABSTRACT

While cryosurgery has proven capable in treating of a variety of conditions, it has met with some resistance among physicians, in part due to shortcomings in the ability to predict treatment outcomes. Here we attempt to address several key issues related to predictive modeling by demonstrating methods for accurately characterizing heat transfer from cryoprobes, report temperature dependent thermal properties for ultrasound gel (a convenient tissue phantom) down to cryogenic temperatures, and demonstrate the ability of convective exchange heat transfer boundary conditions to accurately describe freezing in the case of single and multiple interacting cryoprobe(s). Temperature dependent changes in the specific heat and thermal conductivity for ultrasound gel are reported down to -150 °C for the first time here and these data were used to accurately describe freezing in ultrasound gel in subsequent modeling. Freezing around a single and two interacting cryoprobe(s) was characterized in the ultrasound gel phantom by mapping the temperature in and around the "iceball" with carefully placed thermocouple arrays. These experimental data were fit with finite-element modeling in COMSOL Multiphysics, which was used to investigate the sensitivity and effectiveness of convective boundary conditions in describing heat transfer from the cryoprobes. Heat transfer at the probe tip was described in terms of a convective coefficient and the cryogen temperature. While model accuracy depended strongly on spatial (i.e., along the exchange surface) variation in the convective coefficient, it was much less sensitive to spatial and transient variations in the cryogen temperature parameter. The optimized fit, convective exchange conditions for the single-probe case also provided close agreement with the experimental data for the case of two interacting cryoprobes, suggesting that this basic characterization and modeling approach can be extended to accurately describe more complicated, multiprobe freezing geometries. Accurately characterizing cryoprobe behavior in phantoms requires detailed knowledge of the freezing medium's properties throughout the range of expected temperatures and an appropriate description of the heat transfer across the probe's exchange surfaces. Here we demonstrate that convective exchange boundary conditions provide an accurate and versatile description of heat transfer from cryoprobes, offering potential advantages over the traditional constant surface heat flux and constant surface temperature descriptions. In addition, although this study was conducted on Joule-Thomson type cryoprobes, the general methodologies should extend to any probe that is based on convective exchange with a cryogenic fluid.


Subject(s)
Convection , Cryosurgery/instrumentation , Hot Temperature , Ultrasonics/instrumentation , Freezing , Gels , Models, Theoretical , Phantoms, Imaging
13.
Nanomedicine ; 9(1): 1-14, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22684017

ABSTRACT

Developments in nanomedicine are expected to provide solutions to many of modern medicine's unsolved problems, so it is no surprise that the literature contains many articles discussing the subject. However, existing reviews tend to focus on specific sectors of nanomedicine or to take a very forward-looking stance and fail to provide a complete perspective on the current landscape. This article provides a more comprehensive and contemporary inventory of nanomedicine products. A keyword search of literature, clinical trial registries, and the Web yielded 247 nanomedicine products that are approved or in various stages of clinical study. Specific information on each was gathered, so the overall field could be described based on various dimensions, including FDA classification, approval status, nanoscale size, treated condition, nanostructure, and others. In addition to documenting the many nanomedicine products already in use in humans, this study identifies several interesting trends forecasting the future of nanomedicine. FROM THE CLINICAL EDITOR: In this one of a kind review, the state of nanomedicine commercialization is discussed, concentrating only on nanomedicine-based developments and products that are either in clinical trials or have already been approved for use.


Subject(s)
Nanomedicine , United States , United States Food and Drug Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...