Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (83): e51378, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24513642

ABSTRACT

The high pressure sapphire cell apparatus was constructed to visually determine the composition of multiphase systems without physical sampling. Specifically, the sapphire cell enables visual data collection from multiple loadings to solve a set of material balances to precisely determine phase composition. Ternary phase diagrams can then be established to determine the proportion of each component in each phase at a given condition. In principle, any ternary system can be studied although ternary systems (gas-liquid-liquid) are the specific examples discussed herein. For instance, the ternary THF-Water-CO2 system was studied at 25 and 40 °C and is described herein. Of key importance, this technique does not require sampling. Circumventing the possible disturbance of the system equilibrium upon sampling, inherent measurement errors, and technical difficulties of physically sampling under pressure is a significant benefit of this technique. Perhaps as important, the sapphire cell also enables the direct visual observation of the phase behavior. In fact, as the CO2 pressure is increased, the homogeneous THF-Water solution phase splits at about 2 MPa. With this technique, it was possible to easily and clearly observe the cloud point and determine the composition of the newly formed phases as a function of pressure. The data acquired with the sapphire cell technique can be used for many applications. In our case, we measured swelling and composition for tunable solvents, like gas-expanded liquids, gas-expanded ionic liquids and Organic Aqueous Tunable Systems (OATS)(1-4). For the latest system, OATS, the high-pressure sapphire cell enabled the study of (1) phase behavior as a function of pressure and temperature, (2) composition of each phase (gas-liquid-liquid) as a function of pressure and temperature and (3) catalyst partitioning in the two liquid phases as a function of pressure and composition. Finally, the sapphire cell is an especially effective tool to gather accurate and reproducible measurements in a timely fashion.


Subject(s)
Carbon Dioxide/chemistry , Chemistry, Physical/instrumentation , Complex Mixtures/chemistry , Water/chemistry , Chemistry, Physical/methods , Furans/chemistry , Kinetics , Phase Transition , Pressure
2.
ChemSusChem ; 7(1): 299-307, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24203891

ABSTRACT

A series of silylated amines have been synthesized for use as reversible ionic liquids in the application of post-combustion carbon capture. We describe a molecular design process aimed at influencing industrially relevant carbon capture properties, such as viscosity, temperature of reversal, and enthalpy of regeneration, while maximizing the overall CO2 -capture capacity. A strong structure-property relationship among the silylamines is demonstrated in which minor structural modifications lead to significant changes in the bulk properties of the reversible ionic liquid formed from reaction with CO2 .


Subject(s)
Amines/chemistry , Carbon Dioxide/chemistry , Ionic Liquids/chemistry , Silanes/chemistry , Carbon Sequestration
SELECTION OF CITATIONS
SEARCH DETAIL
...