Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Infect Dis Ther ; 11(5): 1999-2015, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36058990

ABSTRACT

INTRODUCTION: AOD01 is a novel, fully human immunoglobulin (Ig) G1 neutralizing monoclonal antibody that was developed as a therapeutic against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). This first-in-human study assessed safety, tolerability, pharmacokinetics (PK), and pharmacodynamics of AOD01 in healthy volunteers. METHODS: Intravenous doses of AOD01 were evaluated in escalating cohorts [four single-dose cohorts (2, 5, 10, and 20 mg/kg) and one two-dose cohort (two doses of 20 mg/kg, 24 h apart)]. RESULTS: Twenty-three subjects were randomized to receive AOD01 or a placebo in blinded fashion. A total of 34 treatment-emergent adverse events (TEAEs) were reported; all were mild in severity. Related events (headache and diarrhea) were reported in one subject each. No event of infusion reactions, serious adverse event (SAE), or discontinuation due to AE were reported. The changes in laboratory parameters, vital signs, and electrocardiograms were minimal. Dose-related exposure was seen from doses 2 to 20 mg/kg as confirmed by Cmax and AUC0-tlast. The median Tmax was 1.5-3 h. Clearance was dose independent. Study results revealed long half-lives (163-465 h). Antidrug antibodies (ADA) to AOD01 were not detected among subjects, except in one subject of the two-dose cohort on day 92. Sustained ex vivo neutralization of SARS-CoV-2 was recorded until day 29 with single doses from 2 to 20 mg/kg and until day 43 with two doses of 20 mg/kg. CONCLUSIONS: AOD01 was safe and well tolerated, demonstrated dose-related PK, non-immunogenic status, and sustained ex vivo neutralization of SARS-CoV-2 after single intravenous dose ranging from 2 to 20 mg/kg and two doses of 20 mg/kg and show good potential for treatment of SARS-CoV-2 infection. (Health Sciences Authority identifier number CTA2000119).

2.
PLoS One ; 16(6): e0253487, 2021.
Article in English | MEDLINE | ID: mdl-34161386

ABSTRACT

Although SARS-CoV-2-neutralizing antibodies are promising therapeutics against COVID-19, little is known about their mechanism(s) of action or effective dosing windows. We report the generation and development of SC31, a potent SARS-CoV-2 neutralizing antibody, isolated from a convalescent patient. Antibody-mediated neutralization occurs via an epitope within the receptor-binding domain of the SARS-CoV-2 Spike protein. SC31 exhibited potent anti-SARS-CoV-2 activities in multiple animal models. In SARS-CoV-2 infected K18-human ACE2 transgenic mice, treatment with SC31 greatly reduced viral loads and attenuated pro-inflammatory responses linked to the severity of COVID-19. Importantly, a comparison of the efficacies of SC31 and its Fc-null LALA variant revealed that the optimal therapeutic efficacy of SC31 requires Fc-mediated effector functions that promote IFNγ-driven anti-viral immune responses, in addition to its neutralization ability. A dose-dependent efficacy of SC31 was observed down to 5mg/kg when administered before viral-induced lung inflammatory responses. In addition, antibody-dependent enhancement was not observed even when infected mice were treated with SC31 at sub-therapeutic doses. In SARS-CoV-2-infected hamsters, SC31 treatment significantly prevented weight loss, reduced viral loads, and attenuated the histopathology of the lungs. In rhesus macaques, the therapeutic potential of SC31 was evidenced through the reduction of viral loads in both upper and lower respiratory tracts to undetectable levels. Together, the results of our preclinical studies demonstrated the therapeutic efficacy of SC31 in three different models and its potential as a COVID-19 therapeutic candidate.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , COVID-19/therapy , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing/metabolism , COVID-19/immunology , COVID-19/virology , Chemokines/blood , Chemokines/genetics , Chlorocebus aethiops , Convalescence , Cricetinae , Cytokines/blood , Cytokines/genetics , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/immunology , Immunoglobulin G/isolation & purification , Macaca mulatta , Male , Mice, Transgenic , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Viral Load
3.
Clin Transl Sci ; 13(1): 57-66, 2020 01.
Article in English | MEDLINE | ID: mdl-31343094

ABSTRACT

In the last decade, drug development has tackled substantial challenges to improve efficiency and facilitate access to innovative medicines. Integrated clinical protocols and the investigation of targeted oncology drugs in healthy volunteers (HVs) have emerged as modalities with an increase in scope and complexity of early clinical studies and first-in-human (FIH) studies in particular. However, limited work has been done to explore the impact of these two modalities, alone or in combination, on the scientific value and on the implementation of such articulated studies. We conducted an FIH study in HVs with an oncology targeted drug, an Mnk 1/2 small molecule inhibitor. In this article, we describe results, advantages, and limitations of an integrated clinical protocol with an oncology drug. We further discuss and indicate points to consider when designing and conducting similar scientifically and operationally demanding FIH studies.


Subject(s)
Antineoplastic Agents/adverse effects , Cardiovascular Diseases/diagnosis , Clinical Protocols , Protein Kinase Inhibitors/adverse effects , Research Design , Administration, Oral , Adult , Antineoplastic Agents/administration & dosage , Cardiovascular Diseases/chemically induced , Electrocardiography , Healthy Volunteers , Hematologic Neoplasms/drug therapy , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Male , Medical Oncology/methods , Middle Aged , Monitoring, Ambulatory/methods , Protein Kinase Inhibitors/administration & dosage , Protein Serine-Threonine Kinases/antagonists & inhibitors , Young Adult
4.
Drug Metab Lett ; 9(1): 28-47, 2015.
Article in English | MEDLINE | ID: mdl-25600203

ABSTRACT

The ADME of Pacritinib (SB1518), an orally active JAK 2 inhibitor, was investigated in vitro and in vivo in preclinical species and humans. Pacritinib showed ~5 fold higher affinity to human plasma proteins relative to mouse in vitro. It was metabolized by human CYP3A4 in vitro, and did not significantly induce CYP3A and 1A2 in human hepatocytes. In vitro metabolism studies with mouse and human liver microsomes showed the presence of four major metabolites of Pacritinib -M1 (oxidation), M2 (dealkylation), M3 (oxidation), M4 (reduction). The in vitro and in vivo metabolic patterns observed in mice and humans were in good agreement. Qualitatively and quantitatively, none of the metabolites formed in vivo was >10% of Pacritinib in mouse, dog and humans. Pacritinib showed systemic clearance of 8.0, 1.6, 1.6 l/h/kg, volume of distribution of 14.2, 7.9, 8.5 l/kg, t1/2 of 5.6, 6.0, 4.6 h, and oral bioavailability of 39, 10, and 24% in mouse, rat and dog, respectively. In radiolabeled mass balance and QWBA studies in mice, ~91% of the dose was recovered in feces, suggesting biliary clearance, and maximum radioactivity was seen in the gastrointestinal tract followed by the kidney, heart and low activity in the brain. The relatively high exposures of Pacritinib in humans might be attributed to its very high plasma protein binding, low metabolic and/or biliary clearance.


Subject(s)
Bridged-Ring Compounds/administration & dosage , Bridged-Ring Compounds/pharmacokinetics , Janus Kinase 2/antagonists & inhibitors , Liver/metabolism , Protein Kinase Inhibitors/administration & dosage , Pyrimidines/administration & dosage , Pyrimidines/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Biotransformation , Bridged-Ring Compounds/blood , Cells, Cultured , Cytochrome P-450 CYP3A/metabolism , Dealkylation , Dogs , Feces/chemistry , Hepatobiliary Elimination , Hepatocytes/metabolism , Humans , Janus Kinase 2/metabolism , Male , Metabolic Clearance Rate , Mice, Inbred BALB C , Mice, Nude , Microsomes, Liver/metabolism , Models, Biological , Oxidation-Reduction , Protein Binding , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/pharmacokinetics , Pyrimidines/blood , Rats , Rats, Wistar , Species Specificity , Tissue Distribution
5.
Vaccine ; 32(39): 5041-8, 2014 Sep 03.
Article in English | MEDLINE | ID: mdl-25045806

ABSTRACT

METHODS: A novel, fully bacterially produced recombinant virus-like particle (VLP) based influenza vaccine (gH1-Qbeta) against A/California/07/2009(H1N1) was tested in a double-blind, randomized phase I clinical trial at two clinical sites in Singapore. The trial evaluated the immunogenicity and safety of gH1-Qbeta in the presence or absence of alhydrogel adjuvant. Healthy adult volunteers with no or low pre-existing immunity against A/California/07/2009 (H1N1) were randomized to receive two intramuscular injections 21 days apart, with 100µg vaccine, containing 42µg hemagglutinin antigen. Antibody responses were measured before and 21 days after each immunization by hemagglutination inhibition (HAI) assays. The primary endpoint was seroconversion on Day 42, defined as percentage of subjects which reach a HAI titer ≥40 or achieve an at least 4-fold rise in HAI titer (with pre-existing immunity). The co-secondary endpoints were safety and seroconversion on Day 21. RESULTS: A total of 84 Asian volunteers were enrolled in this study and randomized to receive the adjuvanted (n=43) or the non-adjuvanted (n=41) vaccine. Of those, 43 and 37 respectively (95%) completed the study. There were no deaths or serious adverse events reported during this trial. A total of 535 adverse events occurred during treatment with 49.5% local solicited symptoms, of mostly (76.4%) mild severity. The most common treatment-related systemic symptom was fatigue. The non-adjuvanted vaccine met all primary and secondary endpoints and showed seroconversion in 62.2% and 70.3% of participants respectively on Day 21 and Day 42. While the adjuvanted vaccine showed an increased seroconversion from 25.5% (Day 21) to 51.2% (Day 42), it did not meet the immunogenicity endpoint. CONCLUSION: In summary, non-adjuvanted gH1-Qbeta showed similar antibody mediated immunogenicity and a comparable safety profile in healthy humans to commercially available vaccines. These results warrant the consideration of this VLP vaccine platform for the vaccination against influenza infection (HSA CTC1300092).


Subject(s)
Antibody Formation , Influenza A Virus, H1N1 Subtype , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Adjuvants, Immunologic/administration & dosage , Adult , Aluminum Hydroxide/administration & dosage , Antibodies, Viral/blood , Double-Blind Method , Endpoint Determination , Female , Hemagglutination Inhibition Tests , Humans , Male , Middle Aged , Singapore , Vaccines, Virus-Like Particle/therapeutic use , Young Adult
6.
Mol Cancer Ther ; 12(2): 151-61, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23270925

ABSTRACT

Dysregulation of the PI3K/mTOR pathway, either through amplifications, deletions, or as a direct result of mutations, has been closely linked to the development and progression of a wide range of cancers. Moreover, this pathway activation is a poor prognostic marker for many tumor types and confers resistance to various cancer therapies. Here, we describe VS-5584, a novel, low-molecular weight compound with equivalent potent activity against mTOR (IC(50) = 37 nmol/L) and all class I phosphoinositide 3-kinase (PI3K) isoforms IC(50): PI3Kα = 16 nmol/L; PI3Kß = 68 nmol/L; PI3Kγ = 25 nmol/L; PI3Kδ = 42 nmol/L, without relevant activity on 400 lipid and protein kinases. VS-5584 shows robust modulation of cellular PI3K/mTOR pathways, inhibiting phosphorylation of substrates downstream of PI3K and mTORC1/2. A large human cancer cell line panel screen (436 lines) revealed broad antiproliferative sensitivity and that cells harboring mutations in PI3KCA are generally more sensitive toward VS-5584 treatment. VS-5584 exhibits favorable pharmacokinetic properties after oral dosing in mice and is well tolerated. VS-5584 induces long-lasting and dose-dependent inhibition of PI3K/mTOR signaling in tumor tissue, leading to tumor growth inhibition in various rapalog-sensitive and -resistant human xenograft models. Furthermore, VS-5584 is synergistic with an EGF receptor inhibitor in a gastric tumor model. The unique selectivity profile and favorable pharmacologic and pharmaceutical properties of VS-5584 and its efficacy in a wide range of human tumor models supports further investigations of VS-5584 in clinical trials.


Subject(s)
Morpholines/pharmacology , Neoplasms/drug therapy , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Purines/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/enzymology , Disease Models, Animal , Female , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/enzymology , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, SCID , Morpholines/adverse effects , Morpholines/pharmacokinetics , Neoplasms/enzymology , PTEN Phosphohydrolase/deficiency , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/enzymology , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacokinetics , Purines/adverse effects , Purines/pharmacokinetics , Signal Transduction , Xenograft Model Antitumor Assays
7.
J Immunol ; 189(8): 4123-34, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22962687

ABSTRACT

SB1578 is a novel, orally bioavailable JAK2 inhibitor with specificity for JAK2 within the JAK family and also potent activity against FLT3 and c-Fms. These three tyrosine kinases play a pivotal role in activation of pathways that underlie the pathogenesis of rheumatoid arthritis. SB1578 blocks the activation of these kinases and their downstream signaling in pertinent cells, leading to inhibition of pathological cellular responses. The biochemical and cellular activities of SB1578 translate into its high efficacy in two rodent models of arthritis. SB1578 not only prevents the onset of arthritis but is also potent in treating established disease in collagen-induced arthritis mice with beneficial effects on histopathological parameters of bone resorption and cartilage damage. SB1578 abrogates the inflammatory response and prevents the infiltration of macrophages and neutrophils into affected joints. It also leads to inhibition of Ag-presenting dendritic cells and inhibits the autoimmune component of the disease. In summary, SB1578 has a unique kinase spectrum, and its pharmacological profile provides a strong rationale for the ongoing clinical development in autoimmune diseases.


Subject(s)
Arthritis, Experimental/drug therapy , Arthritis, Experimental/immunology , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Janus Kinase 2/antagonists & inhibitors , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Disease Models, Animal , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Inbred Lew
8.
J Clin Oncol ; 30(33): 4161-7, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-22965964

ABSTRACT

PURPOSE: The Janus kinase 2/signal transducers and activators of transcription (JAK2/STAT) pathway plays an important role in the pathogenesis of hematologic malignancies. We conducted a phase I dose-finding and pharmacokinetic/pharmacodynamic study of SB1518, a potent JAK2 inhibitor, in patients with relapsed lymphoma. PATIENTS AND METHODS: Patients with relapsed or refractory Hodgkin or non-Hodgkin lymphoma of any type except Burkitt's or CNS lymphoma were enrolled. Patient cohorts received escalating doses of SB1518 orally once daily for 28-day cycles. Response was evaluated after 8 weeks. RESULTS: Thirty-four patients received doses of 100 to 600 mg/d. The maximum tolerated dose was not reached. Treatment was well tolerated, with mostly grade 1 and 2 toxicities. Gastrointestinal toxicities were the most common treatment-related events. Cytopenias were infrequent and modest. Pharmacologically active concentrations were achieved at all doses. Dose-related linear increases in area under the concentration-time curve were seen on day 1, with no significant accumulation on day 15. Mean terminal half-life was 1 to 4 days, and mean time to peak concentration ranged from 5 to 9 hours. SB1518 inhibited JAK2 signaling at 4 hours postdose at all levels. Increases in fms-like tyrosine kinase-3 (FLT-3) ligand, reflecting FLT-3 inhibition, were seen in most patients. There were three partial responses (≥300 mg/d) and 15 patients with stable disease (SD), with most responses lasting longer than 2 months. Seven of 13 SDs had tumor reductions of 4% to 46%. CONCLUSION: SB1518 has encouraging activity in relapsed lymphoma, providing the first proof-of-principle of the potential therapeutic value of targeting the JAK/STAT pathway in lymphoma in the clinical setting.


Subject(s)
Bridged-Ring Compounds/administration & dosage , Bridged-Ring Compounds/adverse effects , Janus Kinase 2/antagonists & inhibitors , Lymphoma/drug therapy , Lymphoma/enzymology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Pyrimidines/administration & dosage , Pyrimidines/adverse effects , Administration, Oral , Adult , Aged , Aged, 80 and over , Cohort Studies , Dose-Response Relationship, Drug , Female , Humans , Janus Kinase 2/metabolism , Male , Middle Aged , Recurrence , Young Adult
9.
Bioorg Med Chem Lett ; 22(8): 2880-4, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22437109

ABSTRACT

A series of 2-anilino substituted 4-aryl-8H-purines were prepared as potent inhibitors of PDK1, a serine-threonine kinase thought to play a role in the PI3K/Akt signaling pathway, a key mediator of cancer cell growth, survival and tumorigenesis. The synthesis, SAR and ADME properties of this series of compounds are discussed culminating in the discovery of compound 6 which possessed sub-micromolar cell proliferation activity and 65% oral bioavailability in mice.


Subject(s)
Aniline Compounds/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Purines/chemistry , Small Molecule Libraries/chemistry , Aniline Compounds/pharmacology , Animals , Cell Line, Tumor , Cells, Cultured , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Mice , Molecular Structure , Purines/pharmacology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Small Molecule Libraries/pharmacology , Solubility
10.
J Med Chem ; 55(6): 2623-40, 2012 Mar 22.
Article in English | MEDLINE | ID: mdl-22339472

ABSTRACT

Herein, we describe the synthesis and SAR of a series of small molecule macrocycles that selectively inhibit JAK2 kinase within the JAK family and FLT3 kinase. Following a multiparameter optimization of a key aryl ring of the previously described SB1518 (pacritinib), the highly soluble 14l was selected as the optimal compound. Oral efficacy in the murine collagen-induced arthritis (CIA) model for rheumatoid arthritis (RA) supported 14l as a potential treatment for autoimmune diseases and inflammatory disorders such as psoriasis and RA. Compound 14l (SB1578) was progressed into development and is currently undergoing phase 1 clinical trials in healthy volunteers.


Subject(s)
Antirheumatic Agents/chemical synthesis , Arthritis, Rheumatoid/drug therapy , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Janus Kinase 2/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antirheumatic Agents/pharmacokinetics , Antirheumatic Agents/pharmacology , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Cell Line , Cell Membrane Permeability , Collagen Type II , Dogs , Female , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Janus Kinase 2/physiology , Macaca mulatta , Male , Mice , Mice, Nude , Microsomes/metabolism , Models, Molecular , Rats , Signal Transduction/drug effects , Solubility , Stereoisomerism , Structure-Activity Relationship , TYK2 Kinase/antagonists & inhibitors
11.
J Med Chem ; 55(1): 169-96, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-22148278

ABSTRACT

Herein, we describe the design, synthesis, and SAR of a series of unique small molecule macrocycles that show spectrum selective kinase inhibition of CDKs, JAK2, and FLT3. The most promising leads were assessed in vitro for their inhibition of cancer cell proliferation, solubility, CYP450 inhibition, and microsomal stability. This screening cascade revealed 26 h as a preferred compound with target IC(50) of 13, 73, and 56 nM for CDK2, JAK2 and FLT3, respectively. Pharmacokinetic (PK) studies of 26 h in preclinical species showed good oral exposures. Oral efficacy was observed in colon (HCT-116) and lymphoma (Ramos) xenograft studies, in line with the observed PK/PD correlation. 26h (SB1317/TG02) was progressed into development in 2010 and is currently undergoing phase 1 clinical trials in advanced leukemias and multiple myeloma.


Subject(s)
Antineoplastic Agents/chemical synthesis , Cyclin-Dependent Kinases/antagonists & inhibitors , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Janus Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Computer Simulation , Dogs , Drug Screening Assays, Antitumor , Female , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Microsomes, Liver/metabolism , Models, Molecular , Neoplasm Transplantation , Rats , Stereoisomerism , Structure-Activity Relationship , Transplantation, Heterologous
12.
Drug Metab Dispos ; 39(12): 2219-32, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21873472

ABSTRACT

The preclinical absorption, distribution, metabolism, and excretion (ADME) properties of Pracinostat [(2E)-3-[2-butyl-1-[2-(diethylamino) ethyl]-1H-benzimidazol-5-yl]-N-hydroxyarylamide hydrochloride; SB939], an orally active histone deacetylase inhibitor, were characterized and its human pharmacokinetics (PK) was predicted using Simcyp and allometric scaling. SB939 showed high aqueous solubility with high Caco-2 permeability. Metabolic stability was relatively higher in dog and human liver microsomes than in mouse and rat. The major metabolites formed in human liver microsomes were also observed in preclinical species. Human cytochrome P450 (P450) phenotyping showed that SB939 was primarily metabolized by CYP3A4 and CYP1A2. SB939 did not significantly inhibit human CYP3A4, 1A2, 2D6, and 2C9 (>25 µM) but inhibited 2C19 (IC(50) = 5.8 µM). No significant induction of human CYP3A4 and 1A2 was observed in hepatocytes. Plasma protein binding in mouse, rat, dog, and human ranged between ∼84 and 94%. The blood-to-plasma ratio was ∼1.0 in human blood. SB939 showed high systemic clearance (relative to liver blood flow) of 9.2, 4.5, and 1.5 l · h(-1) · kg(-1) and high volume of distribution at steady state (>0.6 l/kg) of 3.5, 1.7, and 4.2 l/kg in mouse, rat, and dog, respectively. The oral bioavailability was 34, 65, and ∼3% in mice, dogs, and rats, respectively. The predicted oral PK profile and parameters of SB939, using Simcyp and allometric scaling, were in good agreement with observed data in humans. Simcyp predictions showed lack of CYP3A4 and 2C19 drug-drug interaction potential for SB939. In summary, the preclinical ADME of SB939 supported its preclinical and clinical development as an oral drug candidate.


Subject(s)
Benzimidazoles/pharmacokinetics , Histone Deacetylase Inhibitors/pharmacokinetics , Administration, Oral , Animals , Benzimidazoles/administration & dosage , Biological Availability , Caco-2 Cells , Chromatography, Liquid , Cytochrome P-450 Enzyme System/metabolism , Dogs , Female , Histone Deacetylase Inhibitors/administration & dosage , Humans , Male , Mice , Mice, Inbred BALB C , Microsomes, Liver/enzymology , Rats , Rats, Wistar , Tandem Mass Spectrometry
13.
J Med Chem ; 54(13): 4638-58, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21604762

ABSTRACT

Discovery of the activating mutation V617F in Janus Kinase 2 (JAK2(V617F)), a tyrosine kinase critically involved in receptor signaling, recently ignited interest in JAK2 inhibitor therapy as a treatment for myelofibrosis (MF). Herein, we describe the design and synthesis of a series of small molecule 4-aryl-2-aminopyrimidine macrocycles and their biological evaluation against the JAK family of kinase enzymes and FLT3. The most promising leads were assessed for their in vitro ADME properties culminating in the discovery of 21c, a potent JAK2 (IC(50) = 23 and 19 nM for JAK2(WT) and JAK2(V617F), respectively) and FLT3 (IC(50) = 22 nM) inhibitor with selectivity against JAK1 and JAK3 (IC(50) = 1280 and 520 nM, respectively). Further profiling of 21c in preclinical species and mouse xenograft and allograft models is described. Compound 21c (SB1518) was selected as a development candidate and progressed into clinical trials where it is currently in phase 2 for MF and lymphoma.


Subject(s)
Antineoplastic Agents/chemical synthesis , Bridged-Ring Compounds/chemical synthesis , Janus Kinase 2/antagonists & inhibitors , Lymphoma/drug therapy , Primary Myelofibrosis/drug therapy , Pyrimidines/chemical synthesis , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Adenosine Triphosphate/chemistry , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Binding Sites , Bridged-Ring Compounds/pharmacokinetics , Bridged-Ring Compounds/pharmacology , Cell Line, Tumor , Dogs , Drug Screening Assays, Antitumor , Humans , In Vitro Techniques , Mice , Mice, Nude , Microsomes, Liver/metabolism , Models, Molecular , Neoplasm Transplantation , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Solubility , Transplantation, Heterologous , Transplantation, Homologous
14.
Mol Cancer Ther ; 10(7): 1207-17, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21586629

ABSTRACT

SB939 is an oral histone deacetylase (HDAC) inhibitor currently in phase II clinical trials potently inhibiting class I, II, and IV HDACs with favorable pharmacokinetic properties, resulting in tumor tissue accumulation. To show target efficacy, a Western blot assay measuring histone H3 acetylation (acH3) relative to a loading control was developed, validated on cancer cell lines, peripheral blood mononuclear cells (PBMC), and in animal tumor models. Exposure of cells to 60 nmol/L (22 ng/mL) SB939 for 24 hours was sufficient to detect an acH3 signal in 25 µg of protein lysate. AcH3 levels of liver, spleen, PBMCs, bone marrow and tumor were measured in BALB/c mice, HCT-116 xenografted BALB/c nude mice, or in SCID mice orthotopically engrafted with AML (HL-60) after oral treatment with SB939. AcH3 could only be detected after treatment. In all tissues, the highest signal detected was at the 3-hour time point on day 1. On day 15, the signal decreased in normal tissues but increased in cancerous tissues and became detectable in the bone marrow of leukemic mice. In all tissues, acH3 correlated with SB939 dose levels (r(2)=0.76-0.94). When applied to PBMCs from 30 patients with advanced solid malignancies in a phase I clinical trial, a dose-dependent (10-80 mg) increase in relative acH3 was observed 3-hour postdose on day 1, correlating with C(max) and AUC of SB939 concentrations in plasma (r=0.97, P=0.014). Our data show that the favorable pharmacokinetic and pharmacodynamic properties of SB939 are translated from preclinical models to patients.


Subject(s)
Benzimidazoles/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Neoplasms/enzymology , Animals , Benzimidazoles/pharmacokinetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , HCT116 Cells , HL-60 Cells , Histone Deacetylase Inhibitors/pharmacokinetics , Histones/metabolism , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Limit of Detection , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, SCID , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
15.
Mol Cancer Ther ; 9(3): 642-52, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20197387

ABSTRACT

Although clinical responses in liquid tumors and certain lymphomas have been reported, the clinical efficacy of histone deacetylase inhibitors in solid tumors has been limited. This may be in part due to the poor pharmacokinetic of these drugs, resulting in inadequate tumor concentrations of the drug. SB939 is a new hydroxamic acid based histone deacetylase inhibitor with improved physicochemical, pharmaceutical, and pharmacokinetic properties. In vitro, SB939 inhibits class I, II, and IV HDACs, with no effects on other zinc binding enzymes, and shows significant antiproliferative activity against a wide variety of tumor cell lines. It has very favorable pharmacokinetic properties after oral dosing in mice, with >4-fold increased bioavailability and 3.3-fold increased half-life over suberoylanilide hydroxamic acid (SAHA). In contrast to SAHA, SB939 accumulates in tumor tissue and induces a sustained inhibition of histone acetylation in tumor tissue. These excellent pharmacokinetic properties translated into a dose-dependent antitumor efficacy in a xenograft model of human colorectal cancer (HCT-116), with a tumor growth inhibition of 94% versus 48% for SAHA (both at maximum tolerated dose), and was also effective when given in different intermittent schedules. Furthermore, in APC(min) mice, a genetic mouse model of early-stage colon cancer, SB939 inhibited adenoma formation, hemocult scores, and increased hematocrit values more effectively than 5-fluorouracil. Emerging clinical data from phase I trials in cancer patients indicate that the pharmacokinetic and pharmacologic advantages of SB939 are translated to the clinic. The efficacy of SB939 reported here in two very different models of colorectal cancer warrants further investigation in patients.


Subject(s)
Colorectal Neoplasms/drug therapy , Histone Deacetylase Inhibitors/administration & dosage , Histone Deacetylase Inhibitors/pharmacokinetics , Hydroxamic Acids/administration & dosage , Hydroxamic Acids/pharmacokinetics , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Biological Availability , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , HCT116 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Treatment Outcome , Tumor Cells, Cultured , Vorinostat , Xenograft Model Antitumor Assays
16.
J Med Chem ; 48(22): 6970-9, 2005 Nov 03.
Article in English | MEDLINE | ID: mdl-16250655

ABSTRACT

Identification of metabolic biotransformations can significantly affect the drug discovery process. Since bioavailability, activity, toxicity, distribution, and final elimination all depend on metabolic biotransformations, it would be extremely advantageous if this information could be produced early in the discovery phase. Once obtained, this information can help chemists to judge whether a potential candidate should be eliminated from the pipeline or modified to improve chemical stability or safety of new compounds. The use of in silico methods to predict the site of metabolism in phase I cytochrome-mediated reactions is a starting point in any metabolic pathway prediction. This paper presents a new method, specifically designed for chemists, that provides the cytochrome involved and the site of metabolism for any human cytochrome P450 (CYP) mediated reaction acting on new substrates. The methodology can be applied automatically to all the cytochromes for which 3D structure is known and can be used by chemists to detect positions that should be protected in order to avoid metabolic degradation or to check the suitability of a new scaffold or prodrug. The fully automated procedure is also a valuable new tool in early ADME-Tox assays (absorption, distribution, metabolism, and excretion toxicity assays), where drug safety and metabolic profile patterns must be evaluated as soon, and as early, as possible.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Drug Design , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Amphetamines/chemistry , Amphetamines/metabolism , Azetidines/chemistry , Azetidines/metabolism , Cytochrome P-450 Enzyme System/metabolism , Diltiazem/chemistry , Diltiazem/metabolism , Eugenol/chemistry , Eugenol/metabolism , Humans , Models, Molecular , Molecular Structure , Pharmacokinetics , Phthalimides/chemistry , Phthalimides/metabolism , Propanolamines/chemistry , Propanolamines/metabolism , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...