Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 11(9)2019 09 14.
Article in English | MEDLINE | ID: mdl-31540043

ABSTRACT

The herpes simplex virus type 1 (HSV-1) UL37 gene encodes for a multifunctional component of the virion tegument, which is necessary for secondary envelopment in the cytoplasm of infected cells, for motility of the viral particle, and for the first steps in the initiation of virus infection. This 120 kDa protein has several known viral interacting partners, including pUL36, gK/pUL20, pUS10, and VP26, and cellular interacting proteins which include TRAF6, RIG-I, and dystonin. These interactions are likely important for the functions of pUL37 at both early and late stages of infection. We employed a genetic approach to determine essential domains and amino acid residues of pUL37 and their associated functions in cellular localization and virion morphogenesis. Using marker-rescue/marker-transfer methods, we generated a library of GFP-tagged pUL37 mutations in the HSV-1 strain KOS genome. Through viral growth and ultra-structural analysis, we discovered that the C-terminus is essential for replication. The N-terminal 480 amino acids are dispensable for replication in cell culture, although serve some non-essential function as viral titers are reduced in the presence of this truncation. Furthermore, the C-terminal 133 amino acids are important in so much that their absence leads to a lethal phenotype. We further probed the carboxy terminal half of pUL37 by alanine scanning mutagenesis of conserved residues among alphaherpesviruses. Mutant viruses were screened for the inability to form plaques-or greatly reduced plaque size-on Vero cells, of which 22 mutations were chosen for additional analysis. Viruses discovered to have the greatest reduction in viral titers on Vero cells were examined by electron microscopy (EM) and by confocal light microscopy for pUL37-EGFP cellular localization. This genetic approach identified both essential and non-essential domains and residues of the HSV-1 UL37 gene product. The mutations identified in this study are recognized as significant candidates for further analysis of the pUL37 function and may unveil previously undiscovered roles and interactions of this essential tegument gene.


Subject(s)
Amino Acids/genetics , Herpesvirus 1, Human/genetics , Viral Structural Proteins/genetics , Virus Replication , Amino Acids/chemistry , Animals , Cell Culture Techniques , Chlorocebus aethiops , Herpesvirus 1, Human/chemistry , Herpesvirus 1, Human/physiology , Mutation , Phenotype , Vero Cells , Viral Structural Proteins/chemistry , Virion/genetics , Virion/metabolism , Virus Assembly
2.
J Med Chem ; 60(5): 1665-1672, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28059508

ABSTRACT

Macrocyclic peptides are considered large enough to inhibit "undruggable" targets, but the design of passively cell-permeable molecules in this space remains a challenge due to the poorly understood role of molecular size on passive membrane permeability. Using split-pool combinatorial synthesis, we constructed a library of cyclic, per-N-methlyated peptides spanning a wide range of calculated lipohilicities (0 < AlogP < 8) and molecular weights (∼800 Da < MW < ∼1200 Da). Analysis by the parallel artificial membrane permeability assay revealed a steep drop-off in apparent passive permeability with increasing size in stark disagreement with current permeation models. This observation, corroborated by a set of natural products, helps define criteria for achieving permeability in larger molecular size regimes and suggests an operational cutoff, beyond which passive permeability is constrained by a sharply increasing penalty on membrane permeation.


Subject(s)
Cell Membrane Permeability/drug effects , Adsorption , Humans
3.
J Virol Methods ; 241: 46-51, 2017 03.
Article in English | MEDLINE | ID: mdl-28012897

ABSTRACT

Our laboratory was one of the first to engineer a live fluorescent tag, enhanced green fluorescent protein (eGFP), that marked the capsid of herpes simplex virus type 1 (HSV-1) and subsequently maturing virus as the particle made its way to the cell surface. In the present study we sought to increase the repertoire of colors available as fusion to the small capsid protein, VP26, so that they can be used alone or in conjunction with other fluorescent tags (fused to other HSV proteins) to follow the virus as it enters and replicates within the cell. We have now generated viruses expressing VP26 fusions with Cerulean, Venus, mOrange, tdTomato, mCherry, and Dronpa3 fluorescent proteins. These fusions were made in a repaired UL35 gene (VP26) background. These fusions do not affect the replication properties of the virus expressing the fusion polypeptide and the fusion tag was stably associated with intranuclear capsids and mature virions. Of note we could not isolate viruses expressing fusions with fluorescent proteins that have a tendency to dimerize.


Subject(s)
Capsid Proteins/genetics , Capsid Proteins/metabolism , Herpesvirus 1, Human/ultrastructure , Animals , Cell Line , Cell Membrane/genetics , Chlorocebus aethiops , Color , Fluorescent Dyes , Green Fluorescent Proteins , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/growth & development , Herpesvirus 1, Human/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Protein Engineering , Recombinant Fusion Proteins/chemistry , Vero Cells , Virus Replication , Red Fluorescent Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...