Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; 17(7)2017 07.
Article in English | MEDLINE | ID: mdl-28371348

ABSTRACT

New macromolecules such as dendrimers are increasingly needed to drive breakthroughs in diverse areas, for example, healthcare. Here, the authors report hybrid antimicrobial dendrimers synthesized by functionalizing organometallic dendrimers with quaternary ammonium groups or 2-mercaptobenzothiazole. The functionalization tunes the glass transition temperature and antimicrobial activities of the dendrimers. Electron paramagnetic resonance spectroscopy reveals that the dendrimers form free radicals, which have significant implications for catalysis and biology. In vitro antimicrobial assays indicate that the dendrimers are potent antimicrobial agents with activity against multidrug-resistant pathogens such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium as well as other microorganisms. The functionalization increases the activity, especially in the quaternary ammonium group-functionalized dendrimers. Importantly, the activities are selective because human epidermal keratinocytes cells and BJ fibroblast cells exposed to the dendrimers are viable after 24 h.


Subject(s)
Anti-Infective Agents , Dendrimers , Drug Resistance, Multiple, Bacterial/drug effects , Enterococcus faecium/growth & development , Methicillin-Resistant Staphylococcus aureus/growth & development , Organometallic Compounds , Thiazoles , Vancomycin Resistance/drug effects , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Dendrimers/chemical synthesis , Dendrimers/chemistry , Dendrimers/pharmacology , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Thiazoles/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology
2.
Biomaterials ; 118: 27-50, 2017 02.
Article in English | MEDLINE | ID: mdl-27940381

ABSTRACT

Antimicrobial resistance threatens the achievements of science and medicine, as it deactivates conventional antimicrobial therapeutics. Scientists respond to the threat by developing new antimicrobial platforms to prevent and treat infections from these resistant strains. Metal-based antimicrobial macromolecules are emerging as an alternative to conventional platforms because they combine multiple mechanisms of action into one platform due to the distinctive properties of metals. For example, metals interact with intracellular proteins and enzymes, and catalyse various intracellular processes. The macromolecular architecture offers a means to enhance antimicrobial activity since several antimicrobial moieties can be conjugated to the scaffold. Further, these macromolecules can be fabricated into antimicrobial materials for contact-killing medical implants, fabrics, and devices. As volatilization or leaching out of the antimicrobial moieties from the macromolecular scaffold is reduced, these medical implants, fabrics, and devices can retain their antimicrobial activity over an extended period. Recent advances demonstrate the potential of metal-based antimicrobial macromolecules as effective platforms that prevent and treat infections from resistant strains. In this review these advances are thoroughly discussed within the context of examples of metal-based antimicrobial macromolecules, their mechanisms of action and biocompatibility.


Subject(s)
Anti-Infective Agents/pharmacology , Bacterial Physiological Phenomena/drug effects , Drug Resistance, Bacterial/drug effects , Macromolecular Substances/pharmacology , Metal Nanoparticles , Metals/pharmacology , Anti-Infective Agents/chemical synthesis , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Resistance, Bacterial/physiology , Macromolecular Substances/chemical synthesis , Treatment Outcome
3.
Macromol Rapid Commun ; 37(15): 1235-41, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27226397

ABSTRACT

Photoactive materials are actively researched, piloting breakthroughs that have enriched fundamental understanding of science, and have led to real applications. Tetraphenylethene, a photoactive molecule that is of interest from fundamental and applied perspectives, features photochemical properties that are not exploited in the design of photoactive, dual-emissive materials. Here, tetraphenylethene-based, dual-emissive dendrimers are constructed via a synthetic approach that involves a photochemical reaction that exploits the photochemistry of tetraphenylethene. These dendrimers are emissive in solution and in the aggregate state with tunable dual emissions at 368 and 469 nm. The photochemical reaction also tunes the size of the aggregates, increasing the size after UV irradiation. The reported synthetic strategy is a direct and facile approach to accessing dual-emissive macromolecules, especially tetraphenylethene-based systems for real applications.


Subject(s)
Benzene Derivatives/chemical synthesis , Chemistry Techniques, Synthetic , Dendrimers/chemical synthesis , Molecular Structure , Photochemical Processes , Solutions , Spectrometry, Fluorescence , Ultraviolet Rays
4.
Biomacromolecules ; 16(11): 3694-703, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26452022

ABSTRACT

Multidrug-resistant pathogens are an increasing threat to public health. In an effort to curb the virulence of these pathogens, new antimicrobial agents are sought. Here we report a new class of antimicrobial organometallic dendrimers with tunable activity against multidrug-resistant Gram-positive bacteria that included methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Mechanistically, these redox-active, cationic organometallic dendrimers induced oxidative stress on bacteria and also disrupted the microbial cell membrane. The minimum inhibitory concentrations, which provide a quantitative measure of the antimicrobial activity of these dendrimers, were in the low micromolar range. AlamarBlue cell viability assay also confirms the antimicrobial activity of these dendrimers. Interestingly, these dendrimers were noncytotoxic to epidermal cell lines and to mammalian red blood cells, making them potential antimicrobial platforms for topical applications.


Subject(s)
Anti-Infective Agents/pharmacology , Dendrimers/pharmacology , Enterococcus faecium/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Vancomycin-Resistant Enterococci/drug effects , Anti-Infective Agents/chemistry , Dendrimers/chemistry , Microbial Sensitivity Tests , Oxidative Stress/drug effects
5.
Macromol Rapid Commun ; 35(5): 513-59, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24474608

ABSTRACT

Sandwich complexes feature unique properties as the physical and electronic properties of a hydrocarbon ligand or its derivative are integrated into the physical, electronic, magnetic, and optical properties of a metal. Incorporation of these complexes into macromolecules results in intriguing physical, electrical, and optical properties that were hitherto unknown in organic-based macromolecules. These properties are tunable through well-designed synthetic strategies. This review surveys many of the synthetic approaches that have resulted in tuning the properties of sandwich complex-containing macromolecules. While the past two decades have seen an ever-growing number of research publications in this field, gaps remain to be filled. Thus, we expect this review to stimulate research interest towards bridging these gaps, which include the insolubility of some of these macromolecules as well as expanding the scope of the sandwich complexes.


Subject(s)
Chemistry, Organic/methods , Macromolecular Substances/chemistry , Macromolecular Substances/chemical synthesis , Polymerization , Polymers/chemical synthesis , Polymers/chemistry
6.
Chemistry ; 12(34): 8696-707, 2006 Nov 24.
Article in English | MEDLINE | ID: mdl-16952126

ABSTRACT

Catalytic dehydrocoupling of phosphines was investigated using the anionic zirconocene trihydride salts [Cp*2Zr(mu-H)3Li]3 (1 a) or [Cp*2Zr(mu-H)3K(thf)4] (1 b), and the metallocycles [CpTi(NPtBu3)(CH2)4] (6) and [Cp*M(NPtBu3)(CH2)4] (M=Ti 20, Zr 21) as catalyst precursors. Dehydrocoupling of primary phosphines RPH2 (R=Ph, C6H2Me3, Cy, C10H7) gave both dehydrocoupled dimers RP(H)P(H)R or cyclic oligophosphines (RP)n (n=4, 5) while reaction of tBu3C6H2PH2 gave the phosphaindoline tBu2(Me2CCH2)C6H2PH 9. Stoichiometric reactions of these catalyst precursors with primary phosphines afforded [Cp*2Zr((PR)2)H][K(thf)4] (R=Ph 2, Cy 3, C6H2Me3 4), [Cp*2Zr((PPh)3)H][K(thf)4] (5), [CpTi(NPtBu3)(PPh)3] (7) and [CpTi(NPtBu3)(mu-PHPh)]2 (8), while reaction of 6 with (C6H2tBu3)PH2 in the presence of PMe3 afforded [CpTi(NPtBu3)(PMe3)(P(C6H2tBu3)] (10). The secondary phosphines Ph2PH and (PhHPCH2)2CH2 also undergo dehydrocoupling affording (Ph2P)2 and (PhPCH2)2CH2. The bisphosphines (CH2PH2)2 and C6H4(PH2)2 are dehydrocoupled to give (PCH2CH2PH)2)(12) and (C6H4P(PH))2 (13) while prolonged reaction of 13 gave (C6H4P2)(8) (14). The analogous bisphosphine Me2C6H4(PH)2 (17) was prepared and dehydrocoupling catalysis afforded (Me2C6H2P(PH))2 (18) and subsequently [(Me2C6H2P2)2(mu-Me2C6H2P2)]2 (19). Stoichiometric reactions with these bisphosphines gave [Cp*2Zr(H)(PH)2C6-H4][Li(thf)4] (22), [CpTi(NPtBu3)(PH)2C6H4]2 (23) and [Cp*Ti(NPtBu3)(PH)2C6H4] (24). Mechanistic implications are discussed.

7.
Dalton Trans ; (21): 3431-3, 2004 Nov 07.
Article in English | MEDLINE | ID: mdl-15510257

ABSTRACT

Oxidation of Cr[N(SiMe(3))(2)](2)(THF)(2) with iodine and dicumyl peroxide results in tetrahedral Cr(iv) Cr[N(SiMe(3))(2)](2)I(2) and trigonal planar Cr(iii) Cr[N(SiMe(3))(2)](OCMe(2)Ph)(2), respectively; both complexes have been characterised by single-crystal X-ray diffraction, and both are active for ethylene polymerisation with alkylaluminium co-catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...