Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 102021 06 01.
Article in English | MEDLINE | ID: mdl-34061020

ABSTRACT

Primary sensory neurons are generally considered the only source of dorsal horn calcitonin gene-related peptide (CGRP), a neuropeptide critical to the transmission of pain messages. Using a tamoxifen-inducible CalcaCreER transgenic mouse, here we identified a distinct population of CGRP-expressing excitatory interneurons in lamina III of the spinal cord dorsal horn and trigeminal nucleus caudalis. These interneurons have spine-laden, dorsally directed, dendrites, and ventrally directed axons. As under resting conditions, CGRP interneurons are under tonic inhibitory control, neither innocuous nor noxious stimulation provoked significant Fos expression in these neurons. However, synchronous, electrical non-nociceptive Aß primary afferent stimulation of dorsal roots depolarized the CGRP interneurons, consistent with their receipt of a VGLUT1 innervation. On the other hand, chemogenetic activation of the neurons produced a mechanical hypersensitivity in response to von Frey stimulation, whereas their caspase-mediated ablation led to mechanical hyposensitivity. Finally, after partial peripheral nerve injury, innocuous stimulation (brush) induced significant Fos expression in the CGRP interneurons. These findings suggest that CGRP interneurons become hyperexcitable and contribute either to ascending circuits originating in deep dorsal horn or to the reflex circuits in baseline conditions, but not in the setting of nerve injury.


The ability to sense pain is critical to our survival. Normally, pain is provoked by intense heat or cold temperatures, strong force or a chemical stimulus, for example, capsaicin, the pain-provoking substance in chili peppers. However, if nerve fibers in the arms or legs are damaged, pain can occur in response to touch or pressure stimuli that are normally painless. This hypersensitivity is called mechanical allodynia. A protein called calcitonin gene-related peptide, or CGRP, has been implicated in mechanical allodynia and other chronic pain conditions, such as migraine. CGRP is found in, and released from, the neurons that receive and transmit pain messages from tissues, such as skin and muscles, to the spinal cord. However, only a few distinct groups of CGRP-expressing neurons have been identified and it is unclear if these nerve cells also contribute to mechanical allodynia. To investigate this, Löken et al. genetically engineered mice so that all nerve cells containing CGRP produced red fluorescent light when illuminated with a laser. This included a previously unexplored group of CGRP-expressing neurons found in a part of the spinal cord that is known to receive information about non-painful stimuli. Using neuroanatomical methods, Löken et al. monitored the activity of these neurons in response to various stimuli, before and after a partial nerve injury. This partial injury was induced via a surgery that cut off a few, but not all, branches of a key leg nerve. The experiments showed that in their normal state, the CGRP-expressing neurons hardly responded to mechanical stimulation. In fact, it was difficult to establish what they normally respond to. However, after a nerve injury, brushing the mice's skin evoked significant activity in these cells. Moreover, when these CGRP cells were artificially stimulated, the stimulation induced hypersensitivity to mechanical stimuli, even when the mice had no nerve damage. These results suggest that this group of neurons, which are normally suppressed, can become hyperexcitable and contribute to the development of mechanical allodynia. In summary, Löken et al. have identified a group of nerve cells in the spinal cord that process mechanical information and contribute to touch-evoked pain. Future studies will identify the nerve circuits that are targeted by CGRP released from these nerve cells. These circuits represent a new therapeutic target for managing chronic pain conditions related to nerve damage, specifically mechanical allodynia, which is the most common complaint of patients with chronic pain.


Subject(s)
Calcitonin Gene-Related Peptide/metabolism , Hyperalgesia/metabolism , Interneurons/metabolism , Mechanotransduction, Cellular , Pain Threshold , Posterior Horn Cells/metabolism , Animals , Behavior, Animal , Calcitonin Gene-Related Peptide/genetics , Disease Models, Animal , Hyperalgesia/genetics , Hyperalgesia/physiopathology , Mice, Inbred C57BL , Mice, Transgenic , Neural Inhibition , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/physiopathology , Physical Stimulation , Proto-Oncogene Proteins c-fos/metabolism , Vesicular Glutamate Transport Protein 1/metabolism
2.
Brain ; 142(9): 2655-2669, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31321411

ABSTRACT

Dysfunction of inhibitory circuits in the rostral anterior cingulate cortex underlies the affective (aversive), but not the sensory-discriminative features (hypersensitivity) of the pain experience. To restore inhibitory controls, we transplanted inhibitory interneuron progenitor cells into the rostral anterior cingulate cortex in a chemotherapy-induced neuropathic pain model. The transplants integrated, exerted a GABA-A mediated inhibition of host pyramidal cells and blocked gabapentin preference (i.e. relieved ongoing pain) in a conditioned place preference paradigm. Surprisingly, pain aversiveness persisted when the transplants populated both the rostral and posterior anterior cingulate cortex. We conclude that selective and long lasting inhibition of the rostral anterior cingulate cortex, in the mouse, has a profound pain relieving effect against nerve injury-induced neuropathic pain. However, the interplay between the rostral and posterior anterior cingulate cortices must be considered when examining circuits that influence ongoing pain and pain aversiveness.


Subject(s)
GABAergic Neurons/metabolism , GABAergic Neurons/transplantation , Gyrus Cinguli/metabolism , Neuralgia/metabolism , Neuralgia/therapy , Sciatic Neuropathy/therapy , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neuralgia/pathology , Receptors, GABA-B/metabolism , Sciatic Neuropathy/metabolism , Sciatic Neuropathy/pathology
3.
Pain ; 160(2): 442-462, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30247267

ABSTRACT

Excitatory interneurons account for the majority of neurons in the superficial dorsal horn, but despite their presumed contribution to pain and itch, there is still limited information about their organisation and function. We recently identified 2 populations of excitatory interneuron defined by expression of gastrin-releasing peptide (GRP) or substance P (SP). Here, we demonstrate that these cells show major differences in their morphological, electrophysiological, and pharmacological properties. Based on their somatodendritic morphology and firing patterns, we propose that the SP cells correspond to radial cells, which generally show delayed firing. By contrast, most GRP cells show transient or single-spike firing, and many are likely to correspond to the so-called transient central cells. Unlike the SP cells, few of the GRP cells had long propriospinal projections, suggesting that they are involved primarily in local processing. The 2 populations also differed in responses to neuromodulators, with most SP cells, but few GRP cells, responding to noradrenaline and 5-HT; the converse was true for responses to the µ-opioid agonist DAMGO. Although a recent study suggested that GRP cells are innervated by nociceptors and are strongly activated by noxious stimuli, we found that very few GRP cells receive direct synaptic input from TRPV1-expressing afferents, and that they seldom phosphorylate extracellular signal-regulated kinases in response to noxious stimuli. These findings indicate that the SP and GRP cells differentially process somatosensory information.


Subject(s)
Gastrin-Releasing Peptide/metabolism , Interneurons/physiology , Spinal Cord Dorsal Horn/cytology , Substance P/metabolism , Action Potentials/drug effects , Action Potentials/genetics , Analgesics/pharmacology , Animals , Capsaicin/pharmacology , Cholera Toxin/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Gastrin-Releasing Peptide/genetics , In Vitro Techniques , Interneurons/drug effects , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurotransmitter Agents/pharmacology , Patch-Clamp Techniques , Physical Stimulation , Protein Precursors/genetics , Protein Precursors/metabolism , RNA, Messenger/metabolism , Sensory System Agents/pharmacology , Statistics, Nonparametric , Substance P/genetics , Tachykinins/genetics , Tachykinins/metabolism , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...