Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 28(24): 5419-5430, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36239623

ABSTRACT

PURPOSE: Oncolytic virotherapy with herpes simplex virus-1 (HSV) has shown promise for the treatment of pediatric and adult brain tumors; however, completed and ongoing clinical trials have utilized intratumoral/peritumoral oncolytic HSV (oHSV) inoculation due to intraventricular/intrathecal toxicity concerns. Intratumoral delivery requires an invasive neurosurgical procedure, limits repeat injections, and precludes direct targeting of metastatic and leptomeningeal disease. To address these limitations, we determined causes of toxicity from intraventricular oHSV and established methods for mitigating toxicity to treat disseminated brain tumors in mice. EXPERIMENTAL DESIGN: HSV-sensitive CBA/J mice received intraventricular vehicle, inactivated oHSV, or treatment doses (1×107 plaque-forming units) of oHSV, and toxicity was assessed by weight loss and IHC. Protective strategies to reduce oHSV toxicity, including intraventricular low-dose oHSV or interferon inducer polyinosinic-polycytidylic acid (poly I:C) prior to oHSV treatment dose, were evaluated and then utilized to assess intraventricular oHSV treatment of multiple models of disseminated CNS disease. RESULTS: A standard treatment dose of intraventricular oHSV damaged ependymal cells via virus replication and induction of CD8+ T cells, whereas vehicle or inactivated virus resulted in no toxicity. Subsequent doses of intraventricular oHSV caused little additional toxicity. Interferon induction with phosphorylation of eukaryotic initiation factor-2α (eIF2α) via intraventricular pretreatment with low-dose oHSV or poly I:C mitigated ependyma toxicity. This approach enabled the safe delivery of multiple treatment doses of clinically relevant oHSV G207 and prolonged survival in disseminated brain tumor models. CONCLUSIONS: Toxicity from intraventricular oHSV can be mitigated, resulting in therapeutic benefit. These data support the clinical translation of intraventricular G207.


Subject(s)
Brain Neoplasms , Herpesvirus 1, Human , Oncolytic Virotherapy , Oncolytic Viruses , Mice , Animals , Herpesvirus 1, Human/genetics , Oncolytic Viruses/genetics , Cell Line, Tumor , Mice, Inbred CBA , Oncolytic Virotherapy/adverse effects , Oncolytic Virotherapy/methods , Brain Neoplasms/pathology , Poly I
2.
Theranostics ; 11(2): 665-683, 2021.
Article in English | MEDLINE | ID: mdl-33391498

ABSTRACT

Tumor microenvironments are the result of cellular alterations in cancer that support unrestricted growth and proliferation and result in further modifications in cell behavior, which are critical for tumor progression. Angiogenesis and therapeutic resistance are known to be modulated by hypoxia and other tumor microenvironments, such as acidic stress, both of which are core features of the glioblastoma microenvironment. Hypoxia has also been shown to promote a stem-like state in both non-neoplastic and tumor cells. In glial tumors, glioma stem cells (GSCs) are central in tumor growth, angiogenesis, and therapeutic resistance, and further investigation of the interplay between tumor microenvironments and GSCs is critical to the search for better treatment options for glioblastoma. Accordingly, we summarize the impact of hypoxia and acidic stress on GSC signaling and biologic phenotypes, and potential methods to inhibit these pathways.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , Hypoxia/physiopathology , Neoplastic Stem Cells/pathology , Neovascularization, Pathologic/pathology , Tumor Microenvironment/immunology , Animals , Brain Neoplasms/etiology , Glioma/etiology , Humans
3.
Neuro Oncol ; 18(2): 227-35, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26188016

ABSTRACT

BACKGROUND: Childhood medulloblastoma is associated with significant morbidity and mortality that is compounded by neurotoxicity for the developing brain caused by current therapies, including surgery, craniospinal radiation, and chemotherapy. Innate therapeutic resistance of some aggressive pediatric medulloblastoma has been attributed to a subpopulation of cells, termed cancer-initiating cells or cancer stemlike cells (CSCs), marked by the surface protein CD133 or CD15. Brain tumors characteristically contain areas of pathophysiologic hypoxia, which has been shown to drive the CSC phenotype leading to heightened invasiveness, angiogenesis, and metastasis. Novel therapies that target medulloblastoma CSCs are needed to improve outcomes and decrease toxicity. We hypothesized that oncolytic engineered herpes simplex virus (oHSV) therapy could effectively infect and kill pediatric medulloblastoma cells, including CSCs marked by CD133 or CD15. METHODS: Using 4 human pediatric medulloblastoma xenografts, including 3 molecular subgroup 3 tumors, which portend worse patient outcomes, we determined the expression of CD133, CD15, and the primary HSV-1 entry molecule nectin-1 (CD111) by fluorescence activated cell sorting (FACS) analysis. Infectability and cytotoxicity of clinically relevant oHSVs (G207 and M002) were determined in vitro and in vivo by FACS, immunofluorescent staining, cytotoxicity assays, and murine survival studies. RESULTS: We demonstrate that hypoxia increased the CD133+ cell fraction, while having the opposite effect on CD15 expression. We established that all 4 xenografts, including the CSCs, expressed CD111 and were highly sensitive to killing by G207 or M002. CONCLUSIONS: Pediatric medulloblastoma, including Group 3 tumors, may be an excellent target for oHSV virotherapy, and a clinical trial in medulloblastoma is warranted.


Subject(s)
Antigens, CD/metabolism , Cerebellar Neoplasms/therapy , Fucosyltransferases/metabolism , Glycoproteins/metabolism , Lewis X Antigen/metabolism , Medulloblastoma/therapy , Oncolytic Virotherapy , Oncolytic Viruses/genetics , Peptides/metabolism , AC133 Antigen , Animals , Apoptosis , Cell Proliferation , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Child , Humans , Immunoenzyme Techniques , Medulloblastoma/metabolism , Medulloblastoma/pathology , Mice , Mice, Nude , Tumor Cells, Cultured , Virus Replication , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...