Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Med (Lond) ; 4(1): 97, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778226

ABSTRACT

BACKGROUND: In 2022 the WHO recommended the discretionary expansion of the eligible age range for seasonal malaria chemoprevention (SMC) to children older than 4 years. Older children are at lower risk of clinical disease and severe malaria so there has been uncertainty about the cost-benefit for national control programmes. However, emerging evidence from laboratory studies suggests protecting school-age children reduces the infectious reservoir for malaria and may significantly impact on transmission. This study aimed to assess whether these effects were detectable in the context of a routinely delivered SMC programme. METHODS: In 2021 the Gambia extended the maximum eligible age for SMC from 4 to 9 years. We conducted a prospective population cohort study over the 2021 malaria transmission season covering 2210 inhabitants of 10 communities in the Upper River Region, and used a household-level mixed modelling approach to quantify impacts of SMC on malaria transmission. RESULTS: We demonstrate that the hazard of clinical malaria in older participants aged 10+ years ineligible for SMC decreases by 20% for each additional SMC round per child 0-9 years in the same household. Older inhabitants also benefit from reduced risk of asymptomatic infections in high SMC coverage households. Spatial autoregression tests show impacts are highly localised, with no detectable spillover from nearby households. CONCLUSIONS: Evidence for the transmission-reducing effects of extended-age SMC from routine programmes implemented at scale has been previously limited. Here we demonstrate benefits to the entire household, indicating such programmes may be more cost-effective than previously estimated.


Seasonal malaria chemoprevention (SMC) is the provision of monthly, preventative, anti-malaria medication to young children at times when they are most at risk of severe disease. Recently the World Health Organisation recommended expanding SMC to children older than 4 years. Older children with malaria typically remain symptomless so the advantages were unclear. However, laboratory evidence suggests this group continues to transmit malaria to others. We conducted a population study in 2021 in 10 communities in the Gambia where SMC was extended to all children up to 9 years of age for the first time. We found household members aged over 9 years were less likely to get clinical disease when most young children in the same household did receive SMC. This suggests an added protection of SMC for those who do not receive it, potentially increasing cost-effectiveness.

2.
Malar J ; 20(1): 169, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33771166

ABSTRACT

BACKGROUND: Treatment of clinical Plasmodium falciparum malaria with sulfadoxine-pyrimethamine (SP) and amodiaquine (AQ) is associated with increased post-treatment gametocyte carriage. The effect of seasonal malaria chemoprevention (SMC) with SP and AQ on gametocyte carriage was assessed in asymptomatic P. falciparum infected children. METHODS: The study was carried out in eastern Gambia. Asymptomatic P. falciparum malaria infected children aged 24-59 months old who were eligible to receive SMC (SMC group) and children 5-8 years that were not eligible to receive SMC (comparison group) were recruited. Gametocytaemia was determined by molecular methods before and after SMC administration. Gametocyte carriage between the groups was compared using the chi-squared test and within-person using conditional logistic regression. RESULTS: During the 2017 and 2018 malaria transmission seasons, 65 and 75 children were recruited in the SMC and comparison groups, respectively. Before SMC administration, gametocyte prevalence was 10.7% (7/65) in the SMC group and 13.3% (10/75) in the comparison group (p = 0.64). At day 13 (IQR 12, 13) after SMC administration, this was 9.4% (5/53) in children who received at least the first dose of SMC treatment and 12.7% (9/71) for those in the comparison group (p = 0.57). Similarly, there was no difference in prevalence of gametocytes between children that adhered to all 3-day doses of SMC treatment 15.6% (5/32) and those in the comparison group (p = 0.68). In the SMC group, within-group gametocyte carriage was similar before and after SMC administration in children that received at least the first dose of SMC treatment (OR 0.6, 95% CI 0.14-2.51; p = 0.48) and in those that adhered to all 3-day doses of SMC treatment (OR 1.0, 95% CI 0.20-4.95; p = 1.0). CONCLUSION: In this study with relative low gametocyte prevalence prior to SMC treatment, no evidence was observed that SMC treatment increased gametocyte carriage in asymptomatic P. falciparum malaria infected children.


Subject(s)
Antimalarials/administration & dosage , Asymptomatic Infections/epidemiology , Carrier State/epidemiology , Chemoprevention/statistics & numerical data , Malaria, Falciparum/epidemiology , Plasmodium falciparum/physiology , Carrier State/parasitology , Child , Child, Preschool , Female , Gambia/epidemiology , Humans , Malaria, Falciparum/parasitology , Male , Plasmodium falciparum/drug effects , Seasons
3.
Malar J ; 18(1): 433, 2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31856852

ABSTRACT

BACKGROUND: Asymptomatic malaria parasites are significant sources of infections for onward malaria transmission. Conventional tools for malaria diagnosis such as microscopy and rapid diagnostic test kits (RDT) have relatively low sensitivity, hence the need for alternative tools for active screening of such low-density infections. METHODS: This study tested var acidic terminal sequence-based (varATS) quantitative polymerase chain reaction (qPCR) for screening asymptomatic Plasmodium falciparum infections among dwellers of a sub-urban community in Lagos, Nigeria. Clinically healthy participants were screened for malaria using microscopy, RDT and varATS qPCR techniques. Participants were stratified into three age groups: 1-5, 6-14 and > 14 years old. RESULTS: Of the 316 participants screened for asymptomatic malaria infection, 78 (24.68%) were positive by microscopy, 99 (31.33%) were positive by RDT and 112 (35.44%) by varATS qPCR. Participants aged 6-14 years had the highest prevalence of asymptomatic malaria, with geometric means of ~ 116 parasites/µL and ~ 6689 parasites/µL as detected by microscopy and varATS, respectively. CONCLUSION: This study has revealed high prevalence of asymptomatic malaria in the study population, with varATS detecting additional sub-microscopic infections. The highest concentration of asymptomatic malaria was observed among school-age children between 6 and 14 years old. A large-scale screening to identify other potential hotspots of asymptomatic parasites in the country is recommended.


Subject(s)
Asymptomatic Infections/epidemiology , Malaria, Falciparum/epidemiology , Plasmodium falciparum/isolation & purification , Suburban Population/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Infant , Malaria, Falciparum/parasitology , Male , Middle Aged , Nigeria/epidemiology , Polymerase Chain Reaction , Prevalence , Protozoan Proteins/isolation & purification , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...