Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 29(9)2017 Mar.
Article in English | MEDLINE | ID: mdl-28009460

ABSTRACT

Unique insights into magnetotransport in 20 nm ligand-free La0.67 Sr0.33 MnO3 perovskite nanocrystals of nearly perfect crystalline quality reveal a chemically altered 0.8 nm thick surface layer that triggers exceptionally large magnetoresistance at low temperature, independently of the spin polarization of the ferromagnetic core. This discovery shows how the nanoscale impacts magnetotransport in a material widely spread as electrode in hybrid spintronic devices.

2.
Chem Commun (Camb) ; 47(34): 9663-5, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21559549

ABSTRACT

Sub-micron-sized [Fe(Htrz)(2)(trz)](BF(4))·H(2)O nanoparticles that exhibit a spin crossover transition are positioned between Au electrodes with sub-100 nm separation. After voltage poling, samples exhibit unexpected large conductivity, with photoconductance and photovoltaic behavior.

3.
Chemistry ; 15(25): 6122-30, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19504472

ABSTRACT

This paper describes the synthesis of iron(II) spin-crossover nanoparticles prepared by the reverse micelle technique by using the non-ionic surfactant Lauropal (Ifralan D0205) from the polyoxyethylenic family. By changing the surfactant/water ratio, the size of the particles of [Fe(NH2-trz)3]Br2.3H2O (with NH2trz=4-amino-1,2,4-triazole) can be controlled. On the macroscopic scale this complex exhibits cooperative thermal spin crossovers at 305 and 320 K. We find that when the size is reduced down to 50 nm, the spin transition becomes gradual and no hysteresis can be detected. For our data it seems that the critical size, for which the existence of a thermal hysteresis can be detected, is around 50 nm. Interestingly, the change of the particle size induces almost no change in the temperature of the thermal spin transition. A systematic determination of coherent domain size carried out on the nanoparticles by powder X-ray diffraction indicates that at approximately 30 nm individual particles consist of one coherent domain.

SELECTION OF CITATIONS
SEARCH DETAIL
...