Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters










Publication year range
1.
Front Sports Act Living ; 6: 1366042, 2024.
Article in English | MEDLINE | ID: mdl-38752211

ABSTRACT

In 2023, for the first time in history, the international ski and snowboard federation (FIS) arranged an official ski flying competition where the 15 highest ranked women were allowed to participate. This study investigated jump-to-jump performance development in female ski flying, with men's results used as reference data. Official FIS data from all six jumps of women were evaluated together with the eight jumps by men. Performance was evaluated by a score, where the distance points compensated by wind were divided by take-off speed, enabling performance to be evaluated across jumps and sexes. Women improved performance by 96% from the first to the sixth jump, with two major leaps; from the first to the second jump and from the first to the second day. In contrast, men mainly improved from training to competition. The best women had performance scores equivalent to the 10-20 best ranked men and the sex-difference between the top 3 athletes was 26.2%. This difference was thereafter compared to similar results in the normal and large hill World championship in Planica 2023, in which sex-differences between the top 3 were 8.6% and 14.6% in normal and large hill. This historical competition showed the importance of gaining practical experience with ski flying on performance, exemplified by the large improvement of female athletes. This, together with the enlarge sex-differences in large compared to normal hills, indicates that female ski jumpers have a particularly large improvement-potential in ski flying and must gain specific experience on this through traning and competitions.

2.
Int J Sports Physiol Perform ; 19(1): 88-91, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37917955

ABSTRACT

PURPOSE: In this commentary, I present arguments against the use of the force-velocity profiling concept in design and adaptations of training programs targeting sprinting. The purpose of this commentary is to make sports practitioners more aware of the rationale behind the concept and explain why it does not work. RATIONALE: Force-velocity profiling is a mathematical way to present the velocity development during sprint behavior. Some details of this behavior may be accentuated by transforming it to other variables, but it does not add any new information about sprint performance. Thus, contrary to what is often claimed, the force-velocity profile does not represent maximal capacities (ability of force and velocity generation) of the athlete. It is claimed that through force-velocity profiling one may identify the optimal ratio of force and velocity capacities. Furthermore, proponents of the force-velocity profiling concept suggest that through directed training force and velocity capacities can be altered (inversely dependent) to obtain this optimal ratio, without changing the capacity to express power. Fundamentally, this idea is unfounded and implausible. CONCLUSION: At best, force-velocity profiling may be able to identify between-athletes differences. However, these can be more easily deduced directly from performance time traces.


Subject(s)
Athletic Performance , Running , Humans , Biomechanical Phenomena , Athletes , Acceleration
4.
Front Psychol ; 14: 1252201, 2023.
Article in English | MEDLINE | ID: mdl-37965653

ABSTRACT

The article commences with a fundamental objective: to comprehend movement skills in sports in a manner that can bridge the dualist gap between experiential qualities observed in practice and theoretical and mechanistic explanations. Drawing inspiration from Kuhn's concept of scientific paradigms, practical examples from skiing research, and innovative insights into the integration of phenomenology and mechanistic explanation in cognitive science, we have outlined a three-step integrative approach. The first step entails the development of phenomenological descriptions of the primary experiential qualities inherent in the execution of the skills being investigated. In the second step, phenomenological descriptions play a pivotal role by setting constraints and delineating a space for the elaboration of multilevel mechanistic analyses. These analyses draw upon insights from various fields, encompassing biomechanics, motor control approaches, expertise studies, and cognitive science. The third step involves the systematization of findings and the formulation of sport-specific movement skills theories. We contend that such theories hold substantial significance as they serve as valuable supplements to skill studies conducted within rigid, nomological frameworks. Sport-specific theories include descriptions of first-person experiential qualities and can contribute to bridging the theory-practice gap effectively.

5.
PLoS One ; 18(6): e0287717, 2023.
Article in English | MEDLINE | ID: mdl-37352243

ABSTRACT

The purpose of this study was to examine the influence of tactical positioning on performance in the heats of sprint cross-country (XC) skiing among men and women and the consistency of overtaking events over repeated competitions on the same racecourse. Thirty male and thirty female elite to world-class level skiers within each competition [(sprint International Ski and Snowboard Federation (FIS) points: 40 ± 21 vs. 35 ± 24)] performed two repeated world-cup competitions at four different venues (two in the classical and two in the skating style) between 2017 and 2020. The intermediate rankings at five checkpoints were analysed using television broadcasts of the competitions. Sprint time-trial (STT) rank correlated positively with the final rank for the seven men's (ρ = .54-.82, P < .01) and the eight women's (ρ = .40-.80, P < .05) competitions, while one of the classical competitions for males did not correlate significantly (P = .23). The strength of the correlation coefficients between intermediate ranks and final ranks during the heats increased gradually from the first to the last checkpoint among both sexes in the classical style (τ = ~0.26 to ~0.70) and in the skating style (τ = ~0.22 to ~0.82), in which the majority of performance-variance was decided before the start of the finish sprint. For both sexes, ~20 and 16 overtaking events were observed in each heat for the classical and skating style, respectively. There was a significant sex-difference in the number of overtaking events in one out of the 16 competitions (P < .01), but no differences across seasons for any competition (P = .051-796). Overall, this study showed the importance of tactical positioning for performance in sprint XC skiing, with the number of overtaking events being relatively consistent for competitions performed on the same racecourse.


Subject(s)
Athletic Performance , Skiing , Female , Humans , Male
6.
PLoS One ; 18(3): e0283794, 2023.
Article in English | MEDLINE | ID: mdl-37000799

ABSTRACT

In cross-country skiing, athletes use different techniques akin to locomotor gaits such as walking and running. Transitions between these techniques generally depend on speed and incline, in a similar way as walk-run transitions. Previous studies have examined the roles of incline, speed, and mechanical power demand in triggering transitions. However, it is still not known if mechanical power demand, as an isolated factor, has any role on the choice of technique. The aim of this study was to examine the isolated role of mechanical power on the choice of technique during classic cross-country roller skiing by changing mechanical power demand at fixed speeds and inclines. Six male and eight female athletes performed classical roller skiing on a treadmill at the four combinations of two speeds (10 and 12 km h-1) and two inclines (5 and 8%) while additional resistive forces were applied via a weight-pulley system. Athletes were free to choose between three techniques: double poling, double poling with kick, and diagonal stride. Power and resistive forces at transition were compared using repeated measure (2x2) ANOVA. At a given incline, technique transitions occurred at similar additional resistive force magnitudes at the two speeds. On the steeper incline, the transitions occurred at smaller additional resistive forces. Importantly, transitions were not triggered at similar mechanical power demands across the different incline/speed/resistive force conditions. This suggests that mechanical power itself is not a key technique transition trigger. Both total and additional resistive force (i.e., the manipulated mechanism to regulate power) may be transition triggers when incline is fixed and speed is changed. In combination with previous findings, the current results suggest that no single factor triggers technique transitions in classic cross-country skiing.


Subject(s)
Running , Skiing , Humans , Male , Female , Skiing/physiology , Biomechanical Phenomena/physiology , Running/physiology , Gait , Exercise Test/methods , Oxygen Consumption/physiology
7.
PLoS One ; 17(12): e0278552, 2022.
Article in English | MEDLINE | ID: mdl-36490303

ABSTRACT

The purpose of this study was to examine the influence of race tactics for performance in the heats of an international sprint cross-country (XC) skiing competition in the classical style. Thirty elite male XC skiers (age: 24±3 years, sprint International Ski Federation [FIS] points: 61±27) performed a sprint time-trial (STT) followed by one to three 'knock-out' heats on a 1.7 km racecourse. An integrated GNSS/IMU system was used to determine position, sub-technique distribution and kinematics. Positioning was analysed using the television broadcast of the race. STT rank correlated positively with the final rank [(rs (28) = .72, P = .001)]. The top-two finishers in each heat were on average ~3.8% slower in the heats compared to the STT (237.1±3.9 vs. 228.3±4.0 seconds, P = .001). On average, the skiers performed ~10 overtakings per 100 meters from the start to the last uphill segment but only ~3 overtakings per 100 meters in the last two segments in each heat. 93.8% of the top-two finishing skiers positioned themselves at top 2 before approaching the final uphill, in which the top-two finishers and the skiers ranked 3-4 were generally faster than those ranked 5-6 in the heats (both, P = .01). Here, top-four skiers employed 5.3% longer cycle lengths and 3.4% higher cycle rates in the diagonal sub-technique than skiers ranked 5-6 (all, P = .01). The present study demonstrates the importance of race tactics for performance in the heats of sprint XC skiing, in which the main performance-determining factors in the present racecourse were a front position when approaching the final uphill segment combined with the ability to ski fast in that segment. In general, this illustrates how accurate racecourse analyses may help skiers to optimize their race-individual race-strategies in the heats of sprint XC skiing competitions.


Subject(s)
Athletic Performance , Skiing , Male , Humans , Young Adult , Adult , Hot Temperature , Biomechanical Phenomena
8.
Sports Biomech ; : 1-22, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36300635

ABSTRACT

We investigated the notion that ergometer rowing technique at different intensities, but self-chosen stroke rates (SR) would resemble each other more than when rowing at other intensity-SR combinations. Twelve competitive male rowers performed ergometer rowing at three intensities x three SR, including the self-chosen one. Kinetics were recorded and inverse dynamics applied to estimate joint powers. Our results indicate strong effects of intensity and SR on most kinetic variables (e.g., drive length, time and velocity, recovery time, work per stroke). These effects were hardly reduced when only considering the preferred SR-intensity combinations, except for time profiles of elbow, shoulder, and hip joint powers. SR was mostly regulated by adapting recovery time, leaving drive time and its kinetics mostly affected by intensity. SR and intensity had marginal effects on relative joint power. Kinetics of drive only are largely independent of intensity and SR instruction. Still, this kinetic resemblance is strongest at preferred SR. We conclude that, given a fixed resistance, work rate is mostly steered through SR: Work per stroke is 'set' for the given power requirement. A necessary additional large adjustment in stroke rate is done mostly by modifying recovery time.

9.
J Biomech ; 139: 111139, 2022 06.
Article in English | MEDLINE | ID: mdl-35609493

ABSTRACT

The purpose of this investigation was to compare how key variables of the steady glide phase relate to performance in the two hill sizes used in World Cup and Olympic competitions, i.e, normal and large hills. In this study, 38 and 33 jumps of elite ski jumpers were measured with a differential global navigation satellite system (dGNSS) on a normal (HS106) and large hill (HS140), respectively. For the steady glide phase, the average aerodynamic forces, lift-to-drag-ratio (LD-ratio), vertical and horizontal acceleration and velocity were measured and related to the jump distance as a performance outcome. The aerial time difference between the two hill sizes was 1.1s, explained by the time spent in the steady glide phase. The results for HS106 were in line with the assumptions in recent literature, which propose that the performance is largely determined by the take-off and glide preparation. Hence for normal hills, skiers should aim to reduce vertical acceleration through high aerodynamic forces during the glide phase. Also, no correlation was observed between the LD-ratio and jump length. The data from the large hill indicate that the performance during the steady glide is very important for performance; hence clear differences were found compared to the normal hill. On a large hill, the aim should be to minimize the horizontal deceleration by reducing the aerodynamic drag. A high LD-ratio was correlated to jump length for HS140 and seen to be one of the most important performance factors.


Subject(s)
Athletic Performance , Skiing , Acceleration , Biomechanical Phenomena
10.
Sensors (Basel) ; 22(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35062498

ABSTRACT

The purpose of this study was to find a generic method to determine the aerial phase of ski jumping in which the athlete is in a steady gliding condition, commonly known as the 'stable flight' phase. The aerial phase of ski jumping was investigated from a physical point mass, rather than an athlete-action-centered perspective. An extensive data collection using a differential Global Navigation Satellite System (dGNSS) was carried out in four different hill sizes. A total of 93 jumps performed by 19 athletes of performance level, ranging from junior to World Cup, were measured. Based on our analysis, we propose a generic algorithm that identifies the stable flight based on steady glide aerodynamic conditions, independent of hill size and the performance level of the athletes. The steady gliding is defined as the condition in which the rate-of-change in the lift-to-drag-ratio (LD-ratio) varies within a narrow band-width described by a threshold τ. For this study using dGNSS, τ amounted to 0.01s-1, regardless of hill size and performance level. While the absolute value of τ may vary when measuring with other sensors, we argue that the methodology and algorithm proposed to find the start and end of a steady glide (stable flight) could be used in future studies as a generic definition and help clarify the communication of results and enable more precise comparisons between studies.


Subject(s)
Skiing , Soccer , Athletes , Biomechanical Phenomena , Humans
11.
Front Physiol ; 12: 719341, 2021.
Article in English | MEDLINE | ID: mdl-34899368

ABSTRACT

The ventilatory threshold (VT) separates low- from moderate-intensity exercise, the respiratory compensation point (RCP) moderate- from high-intensity exercise. Both concepts assume breakpoints in respiratory data. However, the objective determination of the VT and RCP using breakpoint models during upper-body modality exercise in wheelchair athletes with spinal cord injury (SCI) has received little attention. Therefore, the aim of this study was to compare the fit of breakpoint models (i.e., two linear regression lines) with continuous no-breakpoint models (i.e., exponential curve/second-order polynomial) to respiratory data obtained during a graded wheelchair exercise test to exhaustion. These fits were compared employing adjusted R2, and blocked bootstrapping was used to derive estimates of a median and 95% confidence intervals (CI). V̇O2-V̇CO2 and V̇E/V̇O2-time data were assessed for the determination of the VT, and V̇CO2-V̇E and V̇E/V̇CO2-time data for the determination of the RCP. Data of 9 wheelchair athletes with tetraplegia and 8 with paraplegia were evaluated. On an overall group-level, there was an overlap in the adjusted R2 median ± 95% CI between the breakpoint and the no-breakpoint models for determining the VT (V̇O2-V̇CO2: 0.991 ± 0.003 vs. 0.990 ± 0.003; V̇E/V̇O2-time: 0.792 ± 0.101 vs. 0.782 ± 0.104, respectively) and RCP (V̇E-V̇CO2: 0.984 ± 0.004 vs. 0.984 ± 0.004; V̇E/V̇CO2-time: 0.729 ± 0.064 vs. 0.691 ± 0.063, respectively), indicating similar model fit. We offer two lines of reasoning: (1) breakpoints in these respiratory data exist but are too subtle to result in a significant difference in adjusted R2 between the investigated breakpoint and no-breakpoint models; (2) breakpoints do not exist, as has been argued previously.

12.
Sensors (Basel) ; 21(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34450758

ABSTRACT

This study investigated the explanatory power of a sensor fusion of two complementary methods to explain performance and its underlying mechanisms in ski jumping. A differential Global Navigation Satellite System (dGNSS) and a markerless video-based pose estimation system (PosEst) were used to measure the kinematics and kinetics from the start of the in-run to the landing. The study had two aims; firstly, the agreement between the two methods was assessed using 16 jumps by athletes of national level from 5 m before the take-off to 20 m after, where the methods had spatial overlap. The comparison revealed a good agreement from 5 m after the take-off, within the uncertainty of the dGNSS (±0.05m). The second part of the study served as a proof of concept of the sensor fusion application, by showcasing the type of performance analysis the systems allows. Two ski jumps by the same ski jumper, with comparable external conditions, were chosen for the case study. The dGNSS was used to analyse the in-run and flight phase, while the PosEst system was used to analyse the take-off and the early flight phase. The proof-of-concept study showed that the methods are suitable to track the kinematic and kinetic characteristics that determine performance in ski jumping and their usability in both research and practice.


Subject(s)
Skiing , Athletes , Biomechanical Phenomena , Humans , Kinetics
13.
PLoS One ; 16(7): e0255202, 2021.
Article in English | MEDLINE | ID: mdl-34320011

ABSTRACT

OBJECTIVES: The aim of this study was to examine the effect of speed on mechanical energy fluctuations and propulsion mechanics in the double-poling (DP) technique of cross-country skiing. METHODS: Kinematics and dynamics were acquired while fourteen male skiers performed roller-skiing DP on a treadmill at increasing speeds (15, 21 and 27 km∙h-1). Kinetic (Ekin), potential (Epot), and total (Ebody) body mechanical energy and pole power (Ppole) were calculated. Inverse dynamics was used to calculate arm power (Parm). Trunk+leg power (PT+L) was estimated, as was the power associated with body movements perpendicular to goal-direction ([Formula: see text]). RESULTS: Ekin and Epot fluctuated out-of-phase throughout the cycle, at first sight indicating that pendulum-like behaviour occurs partly in DP. However, during the swing phase, the increase in Epot (body heightening) was mainly driven by positive PT+L, while the decrease in Ekin was lost to rolling friction, and during the poling phase, considerable positive Parm generation occurs. Thus, possible exchange between Ekin and Epot seem not to occur as directly and passively as in classic pendulum locomotion (walking). During the poling phase, [Formula: see text]fluctuated out-of-phase with Ppole, indicating a transfer of body energy to Ppole. In this way, power generated by trunk+leg mainly during the swing phase (body heightening) can be used in the poling phase as pole power. At all speeds, negative PT+L occurred during the poling phase, suggesting energy absorption of body energy not transferred to pole power. Thus, DP seem to resemble bouncing ball-like behaviour more than pendulum at faster speeds. Over the cycle, Parm contribution to Ppole (external power) was 63% at 15 km∙h-1 and 66% at 21 and 27 km∙h-1, with the remainder being PT+L contribution. CONCLUSIONS: When speed increases in level DP, both power production and absorption by trunk+leg actions increase considerably. This enhanced involvement of the legs at faster speeds is likely a prerequisite for effective generation of pole power at high speeds with very short poling times. However, the relative trunk+leg power contribution did not increase at the speeds studied here.


Subject(s)
Biomechanical Phenomena/physiology , Movement , Skiing , Adult , Humans , Leg/physiology , Male , Young Adult
14.
Front Sports Act Living ; 3: 695052, 2021.
Article in English | MEDLINE | ID: mdl-34308347

ABSTRACT

The purposes of this study were: 1) to investigate the anaerobic energy contribution during a simulated cross-country (XC) skiing mass-start competition while roller-ski skating on a treadmill; 2) to investigate the relationship between the recovery of the anaerobic energy reserves and performance; and 3) to compare the gross efficiency (GE) method and maximal accumulated oxygen deficit (MAOD) to determine the anaerobic contribution. Twelve male XC skiers performed two testing days while roller skiing on a treadmill. To collect submaximal data necessary for the GE and MAOD method, participants performed a resting metabolism measurement, followed by low-intensity warm up, 12 submaximal 4-min bouts, performed using three different skating sub-techniques (G2 on a 12% incline, G3 on 5% and G4 on 2%) on three submaximal intensities on day 1. On day 2, participants performed a 21-min simulated mass-start competition on varying terrain to determine the anaerobic energy contribution. The speed was fixed, but when participants were unable to keep up, a 30-s rest bout was included. Performance was established by the time to exhaustion (TTE) during a sprint at the end of the 21-min protocol. Skiers were ranked based on the number of rest bouts needed to finish the protocol and TTE. The highest GE of day 1 for each of the different inclines/sub-techniques was used to calculate the aerobic and anaerobic contribution during the simulated mass start using the GE method and two different MAOD approaches. About 85-90% of the required energy during the simulated mass-start competition (excluding downhill segments) came from the aerobic energy system and ~10-15% from the anaerobic energy systems. Moderate to large Spearman correlation coefficients were found between recovery of anaerobic energy reserves and performance rank (r s = 0.58-0.71, p < 0.025). No significant difference in anaerobic work was found between methods/approaches (F (1.2,8.5) = 3.2, p = 0.10), while clear individual differences existed. In conclusion, about 10-15% of the required energy during the periods of active propulsion of a 21-min simulated mass-start competition came from the anaerobic energy systems. Due to the intermittent nature of XC skiing, the recovery of anaerobic energy reserves seems highly important for performance. To assess the anaerobic contribution methods should not be used interchangeably.

15.
Front Sports Act Living ; 3: 625656, 2021.
Article in English | MEDLINE | ID: mdl-33644753

ABSTRACT

Paralympic rowers with functional impairments of the legs and trunk rely on appropriate seat configurations for performance. We compared performance, physiology, and biomechanics of an elite Paralympic rower competing in the PR1 class during ergometer rowing in a seat with three different seat and backrest inclination configurations. Unlike able-bodied rowers, PR1 rowers are required to use a seat with a backrest. For this study, we examined the following seat/backrest configurations: conA: 7.5°/25°, conB: 0°/25°, and conC: 0°/5° (usually used by the participant). All data was collected on a single day, i.e., in each configuration, one 4-min submaximal (100 W) and one maximal (all-out) stage was performed. The rowing ergometer provided the average power and (virtual) distance of each stage, while motion capture provided kinematic data, a load cell measured the force exerted on the ergometer chain, and an ergospirometer measured oxygen uptake ( V ˙ O 2 ). Where appropriate, a Friedman's test with post-hoc comparisons performed with Wilcoxon signed-ranked tests identified differences between the configurations. Despite similar distances covered during the submaximal intensity (conA: 793, conB: 793, conC: 787 m), the peak force was lower in conC (conA: 509, conB: 458, conC: 312 N) while the stroke rate (conA: 27 conB: 31, conC: 49 strokes·min-1) and V ˙ O 2 (conA: 34.4, conB: 35.4, conC: 39.6 mL·kg-1·min-1) were higher. During the maximal stage, the virtual distances were 7-9% longer in conA and conB, with higher peak forces (conA: 934 m, 408 N, conB: 918 m, 418 N, conC: 856 m, 331 N), and lower stroke rates (conA: 51, conB: 54, conC: 56 strokes·min-1), though there was no difference in V ˙ O 2 peak (~47 ml-1·kg-1·min-1). At both intensities, trunk range of motion was significantly larger in configurations conA and conB. Although fatigue may have accumulated during the test day, this study showed that a more inclined seat and backrest during ergometer rowing improved the performance of a successful Paralympic PR1 rower. The considerable increase in ergometer rowing performance in one of the top Paralympic rowers in the world is astonishing and highlights the importance of designing equipment that can be adjusted to match the individual needs of Paralympic athletes.

16.
Sports Biomech ; : 1-15, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33533308

ABSTRACT

This study aims to investigate the inrun position in ski-jumping, in search for factors increasing the inrun speed without compromising the take-off. The inrun position of eight World Cup (WC) and fifteen Continental Cup (COC) ski jumpers were investigated in a wind tunnel at NTNU. A preferred position, replicating a jumper's position in competition, was measured for each athlete. Improvements, based on common sense aerodynamics, with the aim to improve the aerodynamic drag were executed. The aerodynamically best of these was compared with the preferred position. A numerical model simulating the inrun speed in ski-jumping hills was used to evaluate the impact the results will have in different hill sizes, for comparisons of drag measurements and inrun speed in competitions. In the preferred position, COC had 15.5% higher drag area than the WC athletes. In their best tested position, a group difference of 10.8% was found. These differences correspond with speed differences between 0.4 and 1.3 kmh-1, or 1-3 gates (as found by the numerical model). Group difference in drag was explained by a larger trunk angle for COC. Both groups improved from their preferred to their best position, due to reductions in thigh and leg angle.

17.
Int J Sports Physiol Perform ; 16(4): 605-608, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33639611

ABSTRACT

PURPOSE: To provide novel insight regarding the influence of exercise modality on training load management by (1) providing a theoretical framework for the impact of physiological and biomechanical mechanisms associated with different exercise modalities on training load management in endurance exercise and (2) comparing effort-matched low-intensity training sessions performed by top-level athletes in endurance sports with similar energy demands. Practical Applications and Conclusions: The ability to perform endurance training with manageable muscular loads and low injury risks in different exercise modalities is influenced both by mechanical factors and by muscular state and coordination, which interrelate in optimizing power production while reducing friction and/or drag. Consequently, the choice of exercise modality in endurance training influences effort beyond commonly used external and internal load measurements and should be considered alongside duration, frequency, and intensity when managing training load. By comparing effort-matched low- to moderate-intensity sessions performed by top-level athletes in endurance sports, this study exemplifies how endurance exercise with varying modalities leads to different tolerable volumes. For example, the weight-bearing exercise and high-impact forces in long-distance running put high loads on muscles and tendons, leading to relatively low training volume tolerance. In speed skating, the flexed knee and hip position required for effective speed skating leads to occlusion of thighs and low volume tolerance. In contrast, the non-weight-bearing, low-contraction exercises in cycling or swimming allow for large volumes in the specific exercise modalities. Overall, these differences have major implications on training load management in sports.


Subject(s)
Running , Skating , Athletes , Exercise , Humans , Physical Endurance
18.
Front Sports Act Living ; 3: 762794, 2021.
Article in English | MEDLINE | ID: mdl-34993468

ABSTRACT

Purpose: To investigate the interaction between exercise modality (i.e., upper- and lower-body exercise) and sex in physiological responses and power output (PO) across the entire intensity spectrum (i.e., from low to maximal intensity). Methods: Ten male and 10 female cross-country (XC) skiers performed a stepwise incremental test to exhaustion consisting of 5 min stages with increasing workload employing upper-body poling (UP) and running (RUN) on two separate days. Mixed measures ANOVA were performed to investigate the interactions between exercise modalities (i.e., UP and RUN) and sex in physiological responses and PO across the entire exercise intensity spectrum. Results: The difference between UP and RUN (ΔUP-RUN), was not different in the female compared with the male XC skiers for peak oxygen uptake (18 ± 6 vs. 18 ± 6 mL·kg-1·min-1, p = 0.843) and peak PO (84 ± 18 vs. 91 ± 22 W, p = 0.207). At most given blood lactate and rating of perceived exertion values, ΔUP-RUN was larger in the male compared with the female skiers for oxygen uptake and PO, but these differences disappeared when the responses were expressed as % of the modality-specific peak. Conclusion: Modality-differences (i.e., ΔUP-RUN) in peak physiological responses and PO did not differ between the female and male XC skiers. This indicates that increased focus on upper-body strength and endurance training in female skiers in recent years may have closed the gap between upper- and lower-body endurance capacity compared with male XC skiers. In addition, no sex-related considerations need to be made when using relative physiological responses for intensity regulation within a specific exercise modality.

19.
Front Physiol ; 11: 1098, 2020.
Article in English | MEDLINE | ID: mdl-32982801

ABSTRACT

Introduction: Variable power output (VP) is one of the main characteristics of a road cycling mass-start. Tolerating VP during outdoor road cycling highly influences performance. There is a lack of continuous and comprehensive measurements during this power condition. Accordingly, the aim of the present study was to investigate physiological response to VP vs. constant power output (CP) as well as the perceived exertion of these two power conditions, and to investigate if variations in power output which span above lactate threshold (LT), differ from variations below LT. Methods: 15 elite competitive cyclists completed three test days, including 1 day of baseline testing and 2 days of main testing, consisting of four bouts of 28 min at two different intensities, "low" at 70% of LT and "high" at 95% of LT, with VP and CP. VP was performed with a 15% fluctuation of the average power output every second minute. Maximal oxygen uptake (VO2), respiratory exchange ratio (RER), heart rate (HR), blood lactate (LA), rating of perceived exertion (RPE), cadence (RPM) and power output (W) were measured. Results: At both low and high intensity, the VP condition induced a significantly higher VO2, HR and LA than the CP condition. Whole-bout RPE was similar between power conditions at high intensity. Additionally, at the high intensity, cycling with VP led to a greater increase in LA and lesser increase in RPE compared to cycling with CP. Discussion: The results of this study show that, despite considerable differences in the demand during the VP and CP bouts, there are minor differences in the perceptual and physiological response directly following these two power conditions in a cohort of elite competitive cyclists. A practical implication of these findings is that training with VP seems to be a viable alternative to training with CP, at least at high intensity.

20.
PLoS One ; 15(9): e0239057, 2020.
Article in English | MEDLINE | ID: mdl-32925963

ABSTRACT

PURPOSE: Biathlon is an Olympic sport combining 3-5 laps of cross-country skiing with rifle shooting, alternating between the prone and standing shooting positions between laps. The individual distance and the sprint are extensively examined whereas the pursuit, with start times based on the sprint results, is unexplored. Therefore, the current study aimed to investigate the contribution from start time, cross-country skiing time, penalty time, shooting time and range time to the overall and isolated performance in biathlon World Cup pursuit races. METHODS: 38 and 37 stepwise linear regression analyses for each of the races were performed, including 112 and 128 unique athletes where 20 and 13 athletes had more than 20 results within top 30 during the seasons 2011/2012-2015/2016 in men and women, respectively. RESULTS: Start time (i.e. sprint race performance) together with penalty time, explained ~80% of the performance-variance (R2) in overall pursuit performance in most races (p<0.01). For isolated pursuit performance, penalty time was the most important component, explaining >54% of the performance-variance in the majority of races, followed by course time (accumulated R2 = .91-.92) and shooting time (accumulated R2 = .98-.99) (p<0.01). Approximately the same rankings of factors were found when comparing standardized coefficients and correlation coefficients of the independent variables included in the regression. CONCLUSION: Start time (i.e. sprint race performance) is the most important component for overall pursuit performance in biathlon, whereas shooting performance followed by course time are the most important components for the isolated pursuit race performance.


Subject(s)
Athletic Performance/physiology , Athletic Performance/statistics & numerical data , Adult , Athletes/psychology , Female , Firearms , Humans , Male , Skiing
SELECTION OF CITATIONS
SEARCH DETAIL
...