Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 73(1): 215-22, 2016.
Article in English | MEDLINE | ID: mdl-26744953

ABSTRACT

Source-separated urine contains most of the excreted nutrients, which can be recovered by using nitrification to stabilize the urine before concentrating the nutrient solution with distillation. The aim of this study was to test this process combination at pilot scale. The nitrification process was efficient in a moving bed biofilm reactor with maximal rates of 930 mg N L(-1) d(-1). Rates decreased to 120 mg N L(-1) d(-1) after switching to more concentrated urine. At high nitrification rates (640 mg N L(-1) d(-1)) and low total ammonia concentrations (1,790 mg NH4-N L(-1) in influent) distillation caused the main primary energy demand of 71 W cap(-1) (nitrification: 13 W cap(-1)) assuming a nitrogen production of 8.8 g N cap(-1) d(-1). Possible process failures include the accumulation of the nitrification intermediate nitrite and the selection of acid-tolerant ammonia-oxidizing bacteria. Especially during reactor start-up, the process must therefore be carefully supervised. The concentrate produced by the nitrification/distillation process is low in heavy metals, but high in nutrients, suggesting a good suitability as an integral fertilizer.


Subject(s)
Distillation , Fertilizers , Nitrification , Urine , Ammonia/analysis , Biofilms , Bioreactors , Nitrites/analysis , Nitrogen , Pilot Projects
2.
Sci Total Environ ; 542(Pt B): 1155-61, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26472260

ABSTRACT

Struvite is a solid phosphorus fertilizer that can be recovered easily from source-separated urine by dosing it with a soluble form of magnesium. The process is simple and low-cost, however, previous studies have shown that the cost of magnesium in low-income countries is crucial to the viability and implementation of struvite precipitation. Literature has proposed producing inexpensive magnesium locally by making magnesium oxide from magnesite. This paper aimed to investigate whether process requirements, costs, and environmental impacts would make this process viable for magnesium production in decentralized settings. Magnesite samples were calcined at temperatures between 400 °C and 800 °C and for durations between 0.5 h and 6 h. The release of magnesium was tested by dissolution in phosphate-depleted urine. The optimal processing conditions were at 700 °C for 1h: magnesite conversion was incomplete at lower temperatures, and the formation of large crystallites caused a decrease in solubility at higher temperatures. The narrow optimal range for magnesium production from magnesite requires reliable process control. Cost estimations for Nepal showed that using local magnesite would provide the cheapest source of magnesium and that CO2 emissions from transport and production would be negligible compared to Nepal's overall CO2 emissions.


Subject(s)
Chemical Precipitation , Fertilizers , Green Chemistry Technology/methods , Magnesium Compounds/chemistry , Magnesium/chemistry , Phosphates/chemistry , Nepal , Struvite
3.
Water Res ; 85: 244-54, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26340062

ABSTRACT

Monitoring of nitrite is essential for an immediate response and prevention of irreversible failure of decentralized biological urine nitrification reactors. Although a few sensors are available for nitrite measurement, none of them are suitable for applications in which both nitrite and nitrate are present in very high concentrations. Such is the case in collected source-separated urine, stabilized by nitrification for long-term storage. Ultraviolet (UV) spectrophotometry in combination with chemometrics is a promising option for monitoring of nitrite. In this study, an immersible in situ UV sensor is investigated for the first time so to establish a relationship between UV absorbance spectra and nitrite concentrations in nitrified urine. The study focuses on the effects of suspended particles and saturation on the absorbance spectra and the chemometric model performance. Detailed analysis indicates that suspended particles in nitrified urine have a negligible effect on nitrite estimation, concluding that sample filtration is not necessary as pretreatment. In contrast, saturation due to very high concentrations affects the model performance severely, suggesting dilution as an essential sample preparation step. However, this can also be mitigated by simple removal of the saturated, lower end of the UV absorbance spectra, and extraction of information from the secondary, weaker nitrite absorbance peak. This approach allows for estimation of nitrite with a simple chemometric model and without sample dilution. These results are promising for a practical application of the UV sensor as an in situ nitrite measurement in a urine nitrification reactor given the exceptional quality of the nitrite estimates in comparison to previous studies.


Subject(s)
Bioreactors , Nitrites/urine , Spectrophotometry, Ultraviolet/methods , Urine/chemistry , Models, Chemical , Nitrification
4.
Ambio ; 44 Suppl 2: S217-27, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25681979

ABSTRACT

Urine contains about 50 % of the phosphorus (P) and about 90 % of the nitrogen (N) excreted by humans and is therefore an interesting substrate for nutrient recovery. Source-separated urine can be used to precipitate struvite or, through a newly developed technology, nitrified urine fertilizer (NUF). In this study, we prepared (33)P radioisotope- and stable (15)N isotope-labeled synthetic NUF (SNUF) and struvite using synthetic urine and determined P and N uptake by greenhouse-grown ryegrass (Lolium multiflorum var. Gemini) fertilized with these products. The P and N in the urine-based fertilizers were as readily plant-available in a slightly acidic soil as the P and N in reference mineral fertilizers. The ryegrass crop recovered 26 % of P applied with both urine-based fertilizers and 72 and 75 % of N applied as struvite and SNUF, respectively. Thus, NUF and urine-derived struvite are valuable N and P recycling fertilizers.


Subject(s)
Nitrogen/metabolism , Phosphorus/metabolism , Urine/chemistry , Humans , Lolium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...