Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 10: 1353, 2019.
Article in English | MEDLINE | ID: mdl-31275276

ABSTRACT

Increased frequency of droughts and degraded edaphic conditions decreases the success of many reforestation efforts in the Pacific Northwest. Microbial endophyte consortia have been demonstrated to contribute to plant growth promotion and protection from abiotic and biotic stresses - specifically drought conditions - across a number of food crops but for limited tree species. Our research aimed to investigate the potential to improve establishment of economically and ecologically important conifers through a series of in situ field trials and ex situ simulations. Microbial endophyte consortia from Salicaceae, previously shown to confer drought tolerance, and conifer endophyte strains with potentially symbiotic traits were selected for trials with Douglas-fir (Pseudotsuga menziesii) and western redcedar (Thuja plicata). Reductive experimentation was used to subject seedlings to a spectrum of simulated drought levels or presence/absence of fertilizer, testing hypotheses that endophyte consortia impart improved drought resistance and growth promotion, respectively. Inoculation from Salicaceae consortia significantly (p ≤ 0.05) improved survival among seedlings of both species subject to increasing drought stress, with T. plicata seedlings surviving at twofold higher rates in extreme drought conditions. Both species demonstrated improved growth 540 days after inoculation of seed with conifer derived consortia. In the carefully controlled greenhouse experiments with both species, seedling Fv/Fm and SPAD values remained significantly (p ≤ 0.05) more stable in inoculated treatment groups as stress increased. Our findings confirm that multi-strain consortia may be applied as seed or field amendment to conifers, and the approach is efficient in garnering a positive growth response and can mitigate abiotic stressors.

2.
PLoS One ; 13(6): e0198489, 2018.
Article in English | MEDLINE | ID: mdl-29927972

ABSTRACT

Using data from 50 long-term permanent plots from across Venezuelan forests in northern South America, we explored large-scale patterns of stem turnover, aboveground biomass (AGB) and woody productivity (AGWP), and the relationships between them and with potential climatic drivers. We used principal component analysis coupled with generalized least squares models to analyze the relationship between climate, forest structure and stem dynamics. Two major axes associated with orthogonal temperature and moisture gradients effectively described more than 90% of the environmental variability in the dataset. Average turnover was 1.91 ± 0.10% year-1 with mortality and recruitment being almost identical, and close to average rates for other mature tropical forests. Turnover rates were significantly different among regions (p < 0.001), with the lowland forests in Western alluvial plains being the most dynamic, and Guiana Shield forests showing the lowest turnover rates. We found a weak positive relationship between AGB and AGWP, with Guiana Shield forests having the highest values for both variables (204.8 ± 14.3 Mg C ha-1 and 3.27 ± 0.27 Mg C ha-1 year-1 respectively), but AGB was much more strongly and negatively related to stem turnover. Our data suggest that moisture is a key driver of turnover, with longer dry seasons favoring greater rates of tree turnover and thus lower biomass, having important implications in the context of climate change, given the increases in drought frequency in many tropical forests. Regional variation in AGWP among Venezuelan forests strongly reflects the effects of climate, with greatest woody productivity where both precipitation and temperatures are high. Overall, forests in wet, low elevation sites and with slow turnover stored the greatest amounts of biomass. Although faster stand dynamics are closely associated with lower carbon storage, stem-level turnover rates and woody productivity did not show any correlation, indicating that stem dynamics and carbon dynamics are largely decoupled from one another.


Subject(s)
Forests , Biomass , Carbon/metabolism , Principal Component Analysis , Rain , Temperature , Tropical Climate , Venezuela
3.
Risk Anal ; 37(1): 173-192, 2017 01.
Article in English | MEDLINE | ID: mdl-27164046

ABSTRACT

The objectives of this study are to understand tradeoffs between forest carbon and timber values, and evaluate the impact of uncertainty in improved forest management (IFM) carbon offset projects to improve forest management decisions. The study uses probabilistic simulation of uncertainty in financial risk for three management scenarios (clearcutting in 45- and 65-year rotations and no harvest) under three carbon price schemes (historic voluntary market prices, cap and trade, and carbon prices set to equal net present value (NPV) from timber-oriented management). Uncertainty is modeled for value and amount of carbon credits and wood products, the accuracy of forest growth model forecasts, and four other variables relevant to American Carbon Registry methodology. Calculations use forest inventory data from a 1,740 ha forest in western Washington State, using the Forest Vegetation Simulator (FVS) growth model. Sensitivity analysis shows that FVS model uncertainty contributes more than 70% to overall NPV variance, followed in importance by variability in inventory sample (3-14%), and short-term prices for timber products (8%), while variability in carbon credit price has little influence (1.1%). At regional average land-holding costs, a no-harvest management scenario would become revenue-positive at a carbon credit break-point price of $14.17/Mg carbon dioxide equivalent (CO2 e). IFM carbon projects are associated with a greater chance of both large payouts and large losses to landowners. These results inform policymakers and forest owners of the carbon credit price necessary for IFM approaches to equal or better the business-as-usual strategy, while highlighting the magnitude of financial risk and reward through probabilistic simulation.

4.
New Phytol ; 201(2): 599-609, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24117518

ABSTRACT

Sustainable production of biomass for bioenergy relies on low-input crop production. Inoculation of bioenergy crops with plant growth-promoting endophytes has the potential to reduce fertilizer inputs through the enhancement of biological nitrogen fixation (BNF). Endophytes isolated from native poplar growing in nutrient-poor conditions were selected for a series of glasshouse and field trials designed to test the overall hypothesis that naturally occurring diazotrophic endophytes impart growth promotion of the host plants. Endophyte inoculations contributed to increased biomass over uninoculated control plants. This growth promotion was more pronounced with multi-strain consortia than with single-strain inocula. Biological nitrogen fixation was estimated through (15)N isotope dilution to be 65% nitrogen derived from air (Ndfa). Phenotypic plasticity in biomass allocation and branch production observed as a result of endophyte inoculations may be useful in bioenergy crop breeding and engineering programs.


Subject(s)
Endophytes/physiology , Nitrogen Fixation , Populus/microbiology , Biomass , Populus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...