Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Environ Occup Health ; 79(1): 11-22, 2024.
Article in English | MEDLINE | ID: mdl-38555729

ABSTRACT

This study investigates the impact of micro-environmental factors on worker breathing zone exposure levels in petrochemical facilities. A laboratory simulation study evaluated near-field exposure to methane for a typical maintenance task. Individual and combinations of micro-environmental factors significantly affected methane exposure. Airflow direction and speed were significant determinants of exposure concentration reduction. A side airflow direction at medium to high speed produced the lowest gas concentration in the breathing zone. Worker body orientation relative to the methane emission point was also a critical factor affecting gas concentration in the worker's breathing zone. The study provides insights into how variations in airflow and small changes in position impact near-field exposures for petrochemical tasks, guiding industrial hygiene professionals' training on qualitative exposure estimation and providing input for near-field exposure modeling to guide quantitative exposure and risk assessment.


Subject(s)
Air Pollutants, Occupational , Inhalation Exposure , Occupational Exposure , Occupational Exposure/analysis , Humans , Air Pollutants, Occupational/analysis , Inhalation Exposure/analysis , Oil and Gas Industry , Ventilation , Environmental Monitoring
2.
Ann Work Expo Health ; 66(8): 1022-1032, 2022 10 11.
Article in English | MEDLINE | ID: mdl-35552627

ABSTRACT

OBJECTIVES: Despite a rise in automation, workers in the petroleum refining and petrochemical manufacturing industry are potentially exposed to various chemicals through inhalation while performing routine job duties. Many factors contribute to the degree of exposure experienced in this setting. The study objective was to characterize the impact of workplace conditions, anthropometric variability, and task orientation on exposure for a simulated routine operations task. METHODS: A chemical exposure laboratory simulation study was designed to evaluate the dependent variable of chemical exposure level in the breathing zone for methane and sulfur hexafluoride. The independent variables were (i) posture of the worker, (ii) worker anthropometry, (iii) process configuration, and (iv) gas density. RESULTS: Pipe height was a significant predictor of gas concentration measured in the breathing zone when located in a position that encouraged the gas to enter the breathing zone of the worker. Worker anthropometry had a major impact; tall worker's (male) chemical concentrations exceeded those of the short worker (female) for methane simulations but the opposite resulted for sulfur hexafluoride. Also, worker posture had a significant impact on gas exposure where nonneutral postures were found to have higher levels of chemical concentration. CONCLUSIONS: The study findings indicate that the breathing zone location is altered by posture and worker height, which changes the exposures relative to the emission source depending on the gas density of the chemicals that are present. As a result, qualitative risk assessment cannot be performed accurately without accounting for these factors. Practically, controls may need to account for worker size differences and posture adaptations.


Subject(s)
Occupational Exposure , Petroleum , Chemical Industry , Ergonomics , Female , Humans , Male , Methane , Posture , Sulfur Hexafluoride
SELECTION OF CITATIONS
SEARCH DETAIL
...