Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(16): e2308956, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38348541

ABSTRACT

Amino acids are indispensable compounds in the body, performing several biological processes that enable proper functioning. In this work, it is demonstrated that a single amino acid, taurine, is also able to promote the ring-opening polymerization (ROP) of several cyclic monomers under industrially relevant conditions. It is shown that the unique zwitterionic structure of taurine, where the negatively charged sulfonic acid group and the protonated amine group are separated by two methylene groups, not only provides high thermal stability but also leads to a dual activation mechanism, which is corroborated by quantum mechanical calculations. This unique mechanism allows for the synthesis of polylactide of up to 50 kDa in bulk at 180 °C with good end-group fidelity using a highly abundant catalyst. Furthermore, cytotoxicity tests confirm that PLLA synthesized with taurine is non-toxic. Moreover, it is demonstrated that the presence of taurine does not have any detrimental effect on the thermal stability of polylactide, and therefore polymers can be used directly without any post-polymerization purification. It is believed that the demonstration that a simple structure composed of a single amino acid can promote polymerization can bring a paradigm shift in the preparation of polymers.

2.
Polymers (Basel) ; 14(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36365648

ABSTRACT

Polylactide (PLA) is among the most commonly used polymers for biomedical applications thanks to its biodegradability and cytocompatibility. However, its inherent stiffness and brittleness are clearly inappropriate for the regeneration of soft tissues (e.g., neural tissue), which demands biomaterials with soft and elastomeric behavior capable of resembling the mechanical properties of the native tissue. In this work, both L- and D,L-lactide were copolymerized with ethylene brassylate, a macrolactone that represents a promising alternative to previously studied comonomers (e.g., caprolactone) due to its natural origin. The resulting copolymers showed an elastomeric behavior characterized by relatively low Young's modulus, high elongation at break and high strain recovery capacity. The thermoplastic nature of the resulting copolymers allows the incorporation of nanofillers (i.e., carbon nanotubes) that further enable the modulation of their mechanical properties. Additionally, nanostructured scaffolds were easily fabricated through a thermo-pressing process with the aid of a commercially available silicon stamp, providing geometrical cues for the adhesion and elongation of cells representative of the nervous system (i.e., astrocytes). Accordingly, the lactide and ethylene brassylate-based copolymers synthesized herein represent an interesting formulation for the development of polymeric scaffolds intended to be used in the regeneration of soft tissues, thanks to their adjustable mechanical properties, thermoplastic nature and observed cytocompatibility.

3.
Macromol Rapid Commun ; 43(13): e2200008, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35182407

ABSTRACT

Chemically recyclable polymers have attracted increasing attention since they are promising materials in a circular economy, but such polymers appropriate for packaging applications are scarce. Here a combined thermal, mechanical, and transport (permeability and sorption) study is presented of a circular polymer system based on biobased trans-hexahydrophthalide which, upon polymerization, can lead to amorphous, homochiral crystalline, and nanocrystalline stereocomplex materials. This study uncovers their largely different transport properties of the same polymer but with different stereochemical arrangements and synergistic or conflicting effects of crystallinity on transport properties versus thermal and mechanical properties. Overall, the homocrystalline chiral polymer shows the best performance with an outstanding barrier character to gases and vapors, outperforming commercial poly(ethylene terephthalate) and polyethylene. The results presented herein show that it is possible to modify the crystalline structure of the same polymer to tune the mechanical and transport properties and generate multiple materials of different barrier characters.


Subject(s)
Plastics , Recycling , Gases , Polyethylene Terephthalates , Polymers , Product Packaging
4.
Polymers (Basel) ; 14(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35012075

ABSTRACT

Lactide-valerolactone copolymers have potential application in the packaging sector. Different copolymers were synthesized, and the kinetics of the copolymerization reactions and the microstructure of the copolymers were analysed. Lactide showed higher reactivity than valerolactone which leads to composition drift through the reaction. Thermal, mechanical and barrier properties of the selected copolymers were studied. Overall, the incorporation of valerolactone results in copolymers with higher ductility than poly(lactide) with intermediate water and oxygen permeability which makes these materials appropriate candidates for use in the packaging sector.

5.
Nat Commun ; 10(1): 3559, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31395871

ABSTRACT

Plastics have become indispensable in modern life and the material of choice in packaging applications, but they have also caused increasing plastic waste accumulation in oceans and landfills. Although there have been continuous efforts to develop biodegradable plastics, the mechanical and/or transport properties of these materials still need to be significantly improved to be suitable for replacing conventional plastic packaging materials. Here we report a class of biorenewable and degradable plastics, based on copolymers of γ-butyrolactone and its ring-fused derivative, with competitive permeability and elongation at break compared to commodity polymers and superior mechanical and transport properties to those of most promising biobased plastics. Importantly, these materials are designed with full chemical recyclability built into their performance with desired mechanical and barrier properties, thus representing a circular economy approach to plastic packaging materials.

6.
Polymers (Basel) ; 11(7)2019 Jul 13.
Article in English | MEDLINE | ID: mdl-31337091

ABSTRACT

In this work, a general, facile, and relatively low-cost method to produce electrically driven non-porous membranes by revalorization of recycled polyolefins is proposed. The polymer matrices are poly(propylene) (PP) and poly(ethylene) (PE) and their corresponding recycled samples, which are respectively mixed with carbon nanotubes (CNT). The performances of the elaborated nanocomposites are studied by morphological, rheological, and electrical conductivity tests. The Joule heating effect is evaluated by applying an electric field and recording the corresponding temperature rise. An increase of 90 °C is obtained in certain cases, which represents the highest temperature enhancement reached so far by the Joule effect in thermoplastics, to our knowledge. The work shows a route to develop stimulus (voltage)-response (temperature) materials with low cost and with potential applications in many fields. As an example, the increase of the permeability with temperature of membranes made of the indicated nanocomposites, is analyzed.

7.
J Am Chem Soc ; 139(13): 4805-4814, 2017 04 05.
Article in English | MEDLINE | ID: mdl-28272877

ABSTRACT

Organocatalysis is becoming an important tool in polymer science because of its versatility and specificity. To date a limited number of organic catalysts have demonstrated the ability to promote stereocontrolled polymerizations. In this work we report one of the first examples of chirality transfer from a catalyst to a polymer in the organocatalyzed ring-opening polymerization (ROP) of rac-lactide (rac-LA). We have polymerized rac-LA using the diastereomeric densely substituted amino acids (2S,3R,4S,5S)-1-methyl-4-nitro-3,5-diphenylpyrrolidine-2-carboxylic acid (endo-6) and (2S,3S,4R,5S)-1-methyl-4-nitro-3,5-diphenylpyrrolidine-2-carboxylic acid (exo-6), combined with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a cocatalyst. Both diastereoisomers not only showed the ability to synthesize enriched isotactic polylactide with a Pm higher than 0.90 at room temperature but also were able to preferentially promote the polymerization of one of the isomers (l or d) with respect to the other. Thus, exo-6 preferentially polymerized l-lactide, whereas endo-6 preferred d-lactide as the substrate. Density functional theory calculations were conducted to investigate the origins of this unique stereocontrol in the polymerization, providing mechanistic insight and explaining why the chirality of the catalyst is able to define the stereochemistry of the monomer insertion.


Subject(s)
Amino Acids/chemistry , Dioxanes/chemistry , Polyesters/chemical synthesis , Molecular Structure , Polyesters/chemistry , Polymerization , Stereoisomerism
8.
ACS Macro Lett ; 2(6): 491-495, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-35581804

ABSTRACT

We report herein a very efficient synthesis strategy for the construction of artificial transient-binding protein-mimic nano-objects. Michael addition-mediated multidirectional self-assembly of individual polymeric chains at r.t. leads to "Michael" nanocarriers that in solution resemble disordered multidomain proteins, as revealed by a combination of small angle neutron scattering measurements and coarse-grained molecular dynamics simulation results, whereas in the dry state adopt a collapsed, globular morphology, as observed by transmission electron microscopy. This extended-to-compact morphology transition taking place upon solvent removal is of paramount importance, among other applications, for the construction of efficient biosensors based on immobilized protein-mimic nano-objects and for the development of transient vitamin-binding systems. As a proof of concept, we show the controlled delivery of vitamin B9 from these novel transient-binding nanocarriers.

9.
J Mech Behav Biomed Mater ; 12: 29-38, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22659093

ABSTRACT

Three statistical poly(L-lactide-co-ε-caprolactone) (PLCL) copolymers of 70% L-lactide content having different chain microstructures ranging from moderate blocky to random (R=0.47,0.69 and 0.92, respectively) were characterized by DSC, GPC and (1)H and (13)C NMR. The results demonstrate that higher randomness character (R→1) limits the capability of crystallization of LA-unit sequences shifting the melting temperature of the copolymers to lower values and reducing the crystallinity fraction substantially. The effect of different distributions of sequences of PLCL on crystallization and phase behavior was also studied for different storage times at room temperature (21±2°C) by DSC. The mechanical properties were evaluated by tensile tests during aging. The PLCL showing a random character closest to the Bernoullian distribution of sequences (l(LA)=1/CL) was found to exhibit higher strain capability and strain recovery values and is less prone to supramolecular arrangements. However, as a result of aging, L-lactide sequence blocks in the other PLCLs of smaller randomness character tend to crystallize prompting to a double T(g) behavior indicative of the existence of phase separation into two compositionally different amorphous phases. Physical aging leads also to dramatic changes in tensile behavior of the moderate blocky PLCLs that evolved from being an elastomeric to be partly a glassy semicrystalline thermoplastic, and, thus, can eventually condition its potential uses for medical devices.


Subject(s)
Polyesters/chemistry , Animals , Biocompatible Materials/chemistry , Biomechanical Phenomena , Calorimetry, Differential Scanning/methods , Crystallization , Elastomers , Equipment Design , Equipment and Supplies , Humans , Magnetic Resonance Spectroscopy/methods , Materials Testing , Polymers/chemistry , Stress, Mechanical , Temperature , Tensile Strength
10.
J Mech Behav Biomed Mater ; 9: 100-12, 2012 May.
Article in English | MEDLINE | ID: mdl-22498288

ABSTRACT

Four poly(L-lactide-co-ε-caprolactone) (PLCL) copolymers were synthesized at 120, 130, 140 and 150 °C by ring opening polymerization using stannous octoate catalyst at a 2000:1 comonomer:catalyst ratio. Gel permeation chromatography (GPC) and (1)H NMR measurements were performed to determine the molecular weight, composition and chain microstructure of copolymers of L-lactide(LA):ε-caprolactone(CL) synthesized using 90:10, 80:20, 75:25 and 70:30 feed ratios. The overall conversion of these PLCL copolymers was in the range of 80%-90% leading to weight average molecular weights (M(w)) between 98,500 and 226,000 g mol(-1) depending on feed composition and polymerization temperature. At temperatures lower than 140 °C, the incorporation of CL units into polymer chains was incomplete because of the low reactivity of CL, thus at 120 °C the copolymer composition was difficult to control obtaining more LA in the copolymer than the desired, hence the blocky character of PLCL copolymers also increased. At 150 °C the catalyst was less effective and the molecular weights of the copolymers took lower values. A temperature of 140 °C was established as optimal to obtain highest yields and molecular weight. The number average crystallizable lactide sequence lengths (l(LA)) shifted from 6.5 to 16.7 LA repeat units for PLCL polymerized at 140 °C while the randomness character (R) value shifted from 0.4 for polymerization at 130 °C to 0.6, at 150 °C. Increasing the LA content in the copolymers the glass transition temperature and the crystallizability and melting temperature of PLCLs approached to that of PLLA homopolymer. The aging sensitivity of PLCLs increased with CL content. A double T(g) behavior due to phase separation associated to crystallizing LA blocks was observed during aging. The mechanical properties, however, evolved toward the PLLA character when the molar content of LA in PLCL was increased from 66% to 90%, observing a shift from an elastomeric thermoplastic behavior to that of a glassy plastic, reflected by an increase in tensile modulus (from 12.0 to 1343.1 MPa) and a decrease in strain recovery after break (from 93.5% to 25.0%). Small amounts of CL content in the copolymers produced large improvements in their deformability with regard to PLLA. In addition, thermogravimetric analysis demonstrated that PLCLs are more stable to thermal degradation than PLLA and they undergo a more complex degradation mechanism than those of the corresponding homopolymers.


Subject(s)
Polyesters/chemistry , Polymers/chemistry , Biocompatible Materials/chemistry , Crystallization , Elastic Modulus , Equipment Design , Gels , Magnetic Resonance Spectroscopy/methods , Materials Testing , Models, Chemical , Models, Statistical , Molecular Weight , Polyesters/chemical synthesis , Pressure , Stress, Mechanical , Temperature , Thermogravimetry/methods
11.
Macromol Rapid Commun ; 32(7): 573-8, 2011 Apr 04.
Article in English | MEDLINE | ID: mdl-21438055

ABSTRACT

Direct observation of the miscibility improving effect of ultra-small polymeric nanoparticles (radius ≈4 nm) in model systems of soft nanocomposites is reported. We have found thermodynamically arrested phase separation in classical poly(styrene) (PS)/poly(vinyl methyl ether) blends when PS linear chains were totally replaced by ultra-small, single chain PS nanoparticles, as determined by thermo-optical microscopy measurements. Partial arrested phase splitting on heating was observed when only some of the PS chains were replaced by unimolecular PS nanoparticles, leading to a significant increase of the lower critical solution temperature (LCST) of the system (up to 40 °C at 15 vol.-% nanoparticle content). Atomic force microscopy and rheological experiments supported these findings. Thermodynamic arrest of the phase separation process induced by replacement of linear polymer chains by unimolecular polymer nanoparticles could have significant implications for industrial applications requiring soft nanocomposite materials with excellent nanoparticle dispersion in a broad temperature range.


Subject(s)
Methyl Ethers/chemistry , Nanocomposites/chemistry , Polystyrenes/chemistry , Polyvinyls/chemistry , Microscopy, Atomic Force , Nanotechnology , Temperature , Thermodynamics
12.
Macromol Rapid Commun ; 30(11): 932-5, 2009 Jun 02.
Article in English | MEDLINE | ID: mdl-21706551

ABSTRACT

We have studied the kinetics of polymeric nanoparticle formation for poly(styrene-block-4-vinylpyridine) [P(S-b-4-VPy)], chains in a non-selective solvent using 1,4-dibromobutane (DBB) as a cross-linker by means of different nuclear magnetic resonance (NMR) spectroscopy techniques. The kinetic process was followed using (1) H, (13) C, and 2-D Heteronuclear Single Quantum Correlation (HSQC) NMR experiments. The kinetic data obtained from 2-D HSQC and (1) H NMR experiments were in good agreement between them, proving the reliability of the 2-D HSQC NMR technique for the in situ study of the kinetics of core-shell nanoparticle formation. A value of 1.5 × 10(-5) s(-1) was determined for the apparent kinetic constant of the P(S-b-4-VPy)-DBB core-shell nanoparticle formation process.

13.
Phys Chem Chem Phys ; 10(5): 650-1, 2008 Feb 07.
Article in English | MEDLINE | ID: mdl-19791447

ABSTRACT

Dilution of contact, hard sphere-like, nanoparticle-nanoparticle interactions upon mixing plays a key role in explaining nanoparticle dispersion in athermal all-polymer nanocomposites, as illustrated for polystyrene-nanoparticle/linear-polystyrene blends as a model system.

SELECTION OF CITATIONS
SEARCH DETAIL
...