Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells Dev ; 33(5-6): 128-142, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38164119

ABSTRACT

Rett Syndrome (RTT) is a severe neurodevelopmental disorder, afflicting 1 in 10,000 female births. It is caused by mutations in the X-linked methyl-CpG-binding protein gene (MECP2), which encodes for the global transcriptional regulator methyl CpG binding protein 2 (MeCP2). As human brain samples of RTT patients are scarce and cannot be used for downstream studies, there is a pressing need for in vitro modeling of pathological neuronal changes. In this study, we use a direct reprogramming method for the generation of neuronal cells from MeCP2-deficient and wild-type human dermal fibroblasts using two episomal plasmids encoding the transcription factors SOX2 and PAX6. We demonstrated that the obtained neurons exhibit a typical neuronal morphology and express the appropriate marker proteins. RNA-sequencing confirmed neuronal identity of the obtained MeCP2-deficient and wild-type neurons. Furthermore, these MeCP2-deficient neurons reflect the pathophysiology of RTT in vitro, with diminished dendritic arborization and hyperacetylation of histone H3 and H4. Treatment with MeCP2, tethered to the cell penetrating peptide TAT, ameliorated hyperacetylation of H4K16 in MeCP2-deficient neurons, which strengthens the RTT relevance of this cell model. We generated a neuronal model based on direct reprogramming derived from patient fibroblasts, providing a powerful tool to study disease mechanisms and investigating novel treatment options for RTT.


Subject(s)
Rett Syndrome , Humans , Female , Rett Syndrome/genetics , Rett Syndrome/metabolism , Rett Syndrome/pathology , Neurons/metabolism , Histones/metabolism , Brain/pathology , Mutation
2.
Int J Biol Macromol ; 209(Pt A): 972-983, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35460749

ABSTRACT

Rett syndrome (RTT) is a neurodevelopmental disorder caused by pathogenic variants leading to functional impairment of the MeCP2 protein. Here, we used purified recombinant MeCP2e1 and MeCP2e2 protein variants fused to a TAT protein transduction domain (PTD) to evaluate their transduction ability into RTT patient-derived fibroblasts and the ability to carry out their cellular function. We then assessed their transduction ability and therapeutic effects in a RTT mouse model. In vitro, TAT-MeCP2e2-eGFP reversed the pathological hyperacetylation of histones H3K9 and H4K16, a hallmark of abolition of MeCP2 function. In vivo, intraperitoneal administration of TAT-MeCP2e1 and TAT-MeCP2e2 extended the lifespan of Mecp2-/y mice by >50%. This was accompanied by rescue of hippocampal CA2 neuron size in animals treated with TAT-MeCP2e1. Taken together, these findings provide a strong indication that recombinant TAT-MeCP2 can reach mouse brains following peripheral injection and can ameliorate the phenotype of RTT mouse models. Thus, our study serves as a first step in the development of a potentially novel RTT therapy.


Subject(s)
Rett Syndrome , Animals , Disease Models, Animal , Gene Products, tat/genetics , Gene Products, tat/therapeutic use , Humans , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice , Mutation , Phenotype , Rett Syndrome/drug therapy , Rett Syndrome/genetics , Rett Syndrome/metabolism
3.
Leukemia ; 35(10): 2827-2839, 2021 10.
Article in English | MEDLINE | ID: mdl-33782537

ABSTRACT

Despite recent approval of targeted drugs for acute myeloid leukemia (AML) therapy, chemotherapy with cytosine arabinoside and anthracyclines remains an important pillar of treatment. Both primary and secondary resistance are frequent and associated with poor survival, yet the underlying molecular mechanisms are incompletely understood. In previous work, we identified genes deregulated between diagnosis and relapse of AML, corresponding to therapy naïve and resistant states, respectively. Among them was MTSS1, whose downregulation is known to enhance aggressiveness of solid tumors. Here we show that low MTSS1 expression at diagnosis was associated with a poor prognosis in AML. MTSS1 expression was regulated by promoter methylation, and reduced by cytosine arabinoside and the anthracycline daunorubicin. Experimental downregulation of MTSS1 affected the expression of numerous genes. It induced the DNA damage response kinase WEE1, and rendered human AML cell lines more resistant to cytosine arabinoside, daunorubicin, and other anti-cancer drugs. Mtss1 knockdown in murine MLL-AF9-driven AML substantially decreased disease latency, and increased leukemic burden and ex vivo chemotherapy resistance. In summary, low MTSS1 expression represents a novel factor contributing to disease aggressiveness, therapy resistance, and poor outcome in AML.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/metabolism , Drug Resistance, Neoplasm , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/pathology , Microfilament Proteins/metabolism , Neoplasm Proteins/metabolism , Animals , Anthracyclines/administration & dosage , Biomarkers, Tumor/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cytarabine/administration & dosage , Daunorubicin/administration & dosage , Female , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice, Inbred C57BL , Microfilament Proteins/genetics , Neoplasm Proteins/genetics , Prognosis , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Survival Rate
4.
Int J Mol Sci ; 20(23)2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31756985

ABSTRACT

The neuropeptide CGRP, acting through the G-protein coupled receptor CALCRL and its coreceptor RAMP1, plays a key role in migraines, which has led to the clinical development of several inhibitory compounds. Recently, high CALCRL expression has been shown to be associated with a poor prognosis in acute myeloid leukemia (AML). We investigate, therefore, the functional role of the CGRP-CALCRL axis in AML. To this end, in silico analyses, human AML cell lines, primary patient samples, and a C57BL/6-based mouse model of AML are used. We find that CALCRL is up-regulated at relapse of AML, in leukemic stem cells (LSCs) versus bulk leukemic cells, and in LSCs versus normal hematopoietic stem cells. CGRP protects receptor-positive AML cell lines and primary AML samples from apoptosis induced by cytostatic drugs used in AML therapy, and this effect is inhibited by specific antagonists. Furthermore, the CGRP antagonist olcegepant increases differentiation and reduces the leukemic burden as well as key stem cell properties in a mouse model of AML. These data provide a basis for further investigations into a possible role of CGRP-CALCRL inhibition in the therapy of AML.


Subject(s)
Calcitonin Gene-Related Peptide/metabolism , Calcitonin Receptor-Like Protein/metabolism , Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Animals , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Apoptosis/drug effects , Calcitonin Receptor-Like Protein/antagonists & inhibitors , Cell Line, Tumor , Daunorubicin/pharmacology , Daunorubicin/therapeutic use , Dipeptides/pharmacology , Dipeptides/therapeutic use , Female , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/drug therapy , Male , Mice , Mice, Inbred C57BL , Middle Aged , Piperazines , Quinazolines/pharmacology , Quinazolines/therapeutic use , Signal Transduction
5.
Sci Rep ; 9(1): 7929, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31138832

ABSTRACT

Methyl-CpG-binding protein 2 (MeCP2) is a multifunctional chromosomal protein that plays a key role in the central nervous system. Its levels need to be tightly regulated, as both deficiency and excess of the protein can lead to severe neuronal dysfunction. Loss-of-function mutations affecting MeCP2 are the primary cause of Rett syndrome (RTT), a severe neurological disorder that is thought to result from absence of functional protein in the brain. Several therapeutic strategies for the treatment of RTT are currently being developed. One of them is the use of stable and native TAT-MeCP2 fusion proteins to replenish its levels in neurons after permeation across the blood-brain barrier (BBB). Here we describe the expression and purification of various transactivator of transcription (TAT)-MeCP2 variants and the development of an electrochemiluminescence based assay (ECLIA) that is able to measure endogenous MeCP2 and recombinant TAT-MeCP2 fusion protein levels in a 96-well plate format. The MeCP2 ECLIA produces highly quantitative, accurate and reproducible measurements with low intra- and inter-assay error throughout a wide working range. To underline its broad applicability, this assay was used to analyze brain tissue and study the transport of TAT-MeCP2 variants across an in vitro model of the blood-brain barrier.


Subject(s)
Blood-Brain Barrier/metabolism , Methyl-CpG-Binding Protein 2/analysis , Methyl-CpG-Binding Protein 2/pharmacokinetics , Animals , Brain Chemistry , Cells, Cultured , Electrochemical Techniques/methods , Female , Fibroblasts/chemistry , Fibroblasts/metabolism , HEK293 Cells , Humans , Luminescent Measurements/methods , Male , Methyl-CpG-Binding Protein 2/administration & dosage , Mice , Mice, Inbred C57BL , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/pharmacokinetics
6.
J Hematol Oncol ; 8: 28, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25886616

ABSTRACT

BACKGROUND: The transcription factor Ecotropic Virus Integration site 1 (EVI1) regulates cellular proliferation, differentiation, and apoptosis, and its overexpression contributes to an aggressive course of disease in myeloid leukemias and other malignancies. Notwithstanding, knowledge about the target genes mediating its biological and pathological functions remains limited. We therefore aimed to identify and characterize novel EVI1 target genes in human myeloid cells. METHODS: U937T_EVI1, a human myeloid cell line expressing EVI1 in a tetracycline regulable manner, was subjected to gene expression profiling. qRT-PCR was used to confirm the regulation of membrane-spanning-4-domains subfamily-A member-3 (MS4A3) by EVI1. Reporter constructs containing various parts of the MS4A3 upstream region were employed in luciferase assays, and binding of EVI1 to the MS4A3 promoter was investigated by chromatin immunoprecipitation. U937 derivative cell lines experimentally expressing EVI1 and/or MS4A3 were generated by retroviral transduction, and tested for their tumorigenicity by subcutaneous injection into severe combined immunodeficient mice. RESULTS: Gene expression microarray analysis identified 27 unique genes that were up-regulated, and 29 unique genes that were down-regulated, in response to EVI1 induction in the human myeloid cell line U937T. The most strongly repressed gene was MS4A3, and its down-regulation by EVI1 was confirmed by qRT-PCR in additional, independent experimental model systems. MS4A3 mRNA levels were also negatively correlated with those of EVI1 in several published AML data sets. Reporter gene assays and chromatin immunoprecipitation showed that EVI1 regulated MS4A3 via direct binding to a promoter proximal region. Experimental re-expression of MS4A3 in an EVI1 overexpressing cell line counteracted the tumor promoting effect of EVI1 in a murine xenograft model by increasing the rate of apoptosis. CONCLUSIONS: Our data reveal MS4A3 as a novel direct target of EVI1 in human myeloid cells, and show that its repression plays a role in EVI1 mediated tumor aggressiveness.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Proliferation , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic/physiology , Leukemia, Myeloid/pathology , Membrane Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Animals , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Proliferation/physiology , Chromatin Immunoprecipitation , DNA-Binding Proteins/genetics , Fluorescent Antibody Technique , Gene Knockdown Techniques , Heterografts , Humans , Immunohistochemistry , Leukemia, Myeloid/genetics , Leukemia, Myeloid/metabolism , MDS1 and EVI1 Complex Locus Protein , Male , Membrane Proteins/genetics , Mice , Mice, SCID , Oligonucleotide Array Sequence Analysis , Proto-Oncogenes/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics
7.
Assay Drug Dev Technol ; 13(3): 167-73, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25848917

ABSTRACT

Spinal muscular atrophy (SMA) is a severe autosomal recessive disorder affecting one in every 10,000 live births. The disease is characterized by loss of alpha-motor neurons in the spinal cord that leads to progressive atrophy and weakness of limb and trunk muscles. This neuromuscular disorder results from deletions and/or mutations within the survival motor neuron 1 (SMN1) gene, leading to a pathologically decreased expression of functional full-length SMN protein. Here we report on the investigation to measure SMN protein levels through electrochemiluminescence immunoassay (ECLIA). This simple assay is a highly quantitative method able to measure SMN protein levels in human, mouse, and rat samples throughout a wide working range with low intra- and interassay error. The sensitivity for human SMN is 30 pg/mL and provides a new tool for the set up of high-throughput screening for basic research. Moreover, we describe a novel tool for a noninvasive assessment of SMN in buccal cells derived from healthy donors, SMA carriers, and SMA patients. The availability of a validated quantitative ECLIA should improve the investigation of novel compounds for the treatment of SMA.


Subject(s)
Electrochemical Techniques/methods , Immunoassay/methods , Luminescence , Mouth Mucosa/cytology , SMN Complex Proteins/analysis , Adult , Animals , Cell Line , Child , Female , HEK293 Cells , Healthy Volunteers , Hep G2 Cells , High-Throughput Screening Assays , Humans , Luminescent Measurements , Male , Mice , Middle Aged , Rats
8.
Eur J Hum Genet ; 23(9): 1186-91, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25469541

ABSTRACT

Weill-Marchesani syndrome is a rare disorder of the connective tissue. Functional variants in ADAMTS10 are associated with Weill-Marchesani syndrome-1. We identified a homozygous missense mutation, c.41T>A, of the ADAMTS10 gene in a 19-year-old female with typical symptoms of WMS1: proportionate short stature, brachydactyly, joint stiffness, and microspherophakia. The ADAMTS10 missense mutation was analysed in silico, with conflicting results as to its effects on protein function, but it was predicted to affect the leader sequence. Molecular characterisation in HEK293 Ebna cells revealed an intracellular mis-targeting of the ADAMTS10 protein with a reduced concentration of the polypeptide in the endoplasmic reticulum. A large reduction in glycosylation of the cytoplasmic fraction of the mutant ADAMTS10 protein versus the wild-type protein and a lack of secretion of the mutant protein are also evident in our results.In conclusion, we identified a novel missense mutation of the ADAMTS10 gene and confirmed the functional consequences suggested by the in silico analysis by conducting molecular studies.


Subject(s)
ADAM Proteins/genetics , Homozygote , Mutation, Missense , Weill-Marchesani Syndrome/genetics , ADAM Proteins/chemistry , ADAM Proteins/metabolism , ADAMTS Proteins , Amino Acid Sequence , Base Sequence , Computer Simulation , Endoplasmic Reticulum/metabolism , Female , Gene Expression , Genotype , Glycosylation , HEK293 Cells , Humans , Molecular Sequence Data , Pedigree , Phenotype , Protein Transport , Sequence Analysis, DNA , Weill-Marchesani Syndrome/diagnosis , Weill-Marchesani Syndrome/metabolism , Weill-Marchesani Syndrome/pathology , Young Adult
9.
Hum Genet ; 124(2): 105-22, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18709565

ABSTRACT

Heterozygous mutations in one of the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 cause the dominant adult cancer syndrome termed Lynch syndrome or hereditary non-polyposis colorectal cancer. During the past 10 years, some 35 reports have delineated the phenotype of patients with biallelic inheritance of mutations in one of these MMR genes. The patients suffer from a condition that is characterised by the development of childhood cancers, mainly haematological malignancies and/or brain tumours, as well as early-onset colorectal cancers. Almost all patients also show signs reminiscent of neurofibromatosis type 1, mainly café au lait spots. Alluding to the underlying mechanism, this condition may be termed as "constitutional mismatch repair-deficiency (CMMR-D) syndrome". To give an overview of the current knowledge and its implications of this recessively inherited cancer syndrome we summarise here the genetic, clinical and pathological findings of the so far 78 reported patients of 46 families suffering from this syndrome.


Subject(s)
DNA Mismatch Repair , DNA Repair-Deficiency Disorders/etiology , Adenosine Triphosphatases/genetics , Alleles , Brain Neoplasms/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Repair Enzymes/genetics , DNA Repair-Deficiency Disorders/complications , DNA Repair-Deficiency Disorders/genetics , DNA Repair-Deficiency Disorders/immunology , DNA-Binding Proteins/genetics , Genes, Neurofibromatosis 1 , Hematologic Neoplasms/genetics , Humans , Mismatch Repair Endonuclease PMS2 , Mutation , Skin Diseases/etiology , Skin Diseases/genetics , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...