Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 78(7): 2759-2766, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35254733

ABSTRACT

BACKGROUND: Field experiments were conducted across multiple sites in 2012 and 2013 to describe sensitivity of soybean to 2,4-D (six doses) and dicamba (seven doses) at V3 and R1 growth stages. Further experiments were conducted under greenhouse conditions in 2017 and 2018 to compare soybean response to several dicamba herbicides across a broader range of doses than those tested in the field. RESULTS: Soybean yield loss was 6.1-fold greater from 2,4-D exposure at V3 compared to R1 and 1.4 times greater from dicamba exposure at R1 than at V3. In V3 exposures, soybean was 15.4 times more sensitive to dicamba than 2,4-D and 134.4-fold more sensitive to dicamba when exposed at R1. Plant injury and height correlations to grain yield resulted in coefficients ranging from 0.65 to 0.91. In greenhouse experiments, five dicamba products were tested at up to 19 doses and as low as 0.002 g ae ha-1 (3.6 × 10-6 % of maximum single use-rate); however, no differences were observed among formulations used in dicamba-resistant crops versus traditional formulations. A no observable effects dose was not identified due to responses observed even at the lowest doses tested, although hormesis effects were observed in plant height. CONCLUSION: These data suggest that the sensitivity of soybean to dicamba is much greater than what has previously been reported. However, as has been indicated by previous work, that injury does not always result in yield loss. © 2022 Society of Chemical Industry.


Subject(s)
Dicamba , Herbicides , 2,4-Dichlorophenoxyacetic Acid/pharmacology , Crops, Agricultural , Dicamba/pharmacology , Herbicides/analysis , Herbicides/pharmacology , Glycine max
2.
Pest Manag Sci ; 70(12): 1902-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24497375

ABSTRACT

BACKGROUND: Amaranthus spinosus, a common weed of pastures, is a close relative of Amaranthus palmeri, a problematic agricultural weed with widespread glyphosate resistance. These two species have been known to hybridize, allowing for transfer of glyphosate resistance. Glyphosate-resistant A. spinosus was recently suspected in a cotton field in Mississippi. RESULTS: Glyphosate-resistant A. spinosus biotypes exhibited a fivefold increase in resistance compared with a glyphosate-susceptible biotype. EPSPS was amplified 33-37 times and expressed 37 times more in glyphosate-resistant A. spinosus biotypes than in a susceptible biotype. The EPSPS sequence in resistant A. spinosus plants was identical to the EPSPS in glyphosate-resistant A. palmeri, but differed at 29 nucleotides from the EPSPS in susceptible A. spinosus plants. PCR analysis revealed similarities between the glyphosate-resistant A. palmeri amplicon and glyphosate-resistant A. spinosus. CONCLUSIONS: Glyphosate resistance in A. spinosus is caused by amplification of the EPSPS gene. Evidence suggests that part of the EPSPS amplicon from resistant A. palmeri is present in glyphosate-resistant A. spinosus. This is likely due to a hybridization event between A. spinosus and glyphosate-resistant A. palmeri somewhere in the lineage of the glyphosate-resistant A. spinosus plants. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Amaranthus/genetics , Glycine/analogs & derivatives , Herbicide Resistance/genetics , Herbicides/pharmacology , 3-Phosphoshikimate 1-Carboxyvinyltransferase/antagonists & inhibitors , Amaranthus/drug effects , Amaranthus/enzymology , Gene Amplification , Gene Dosage , Glycine/pharmacology , Hybridization, Genetic/drug effects , Mississippi , Plant Weeds/drug effects , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...