Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Front Physiol ; 13: 948387, 2022.
Article in English | MEDLINE | ID: mdl-36148309

ABSTRACT

Post-translational modification of mitochondrial proteins represents one mechanism by which the functional activity of mitochondria can be regulated. In the brain, these modifications can influence the functional properties of different neural circuitries. Given that the sirtuin family member Sirt3 represents the primary protein deacetylase enzyme in mitochondria, we tested whether brain mitochondrial proteome acetylation would increase in male or female mice lacking Sirt3. Our results confirm that whole brain mitochondrial proteome acetylation levels are indeed elevated in both sexes of Sirt3-KO mice relative to controls. Consistently, we found the mitochondria of mouse embryonic fibroblast (MEF) cells derived from Sirt3-KO mice were smaller in size, and fewer in number than in wild-type MEFs, and that mitochondrial free calcium levels were elevated within the mitochondria of these cells. As protein acetylation can influence mitochondrial function, and changes in mitochondrial function have been linked to alterations in neural circuit function regulating motor activity and anxiety-like behavior, we tested whether Sirt3-deficient mice would display sensitized responsiveness to the stimulant amphetamine. Both male and female Sirt3-KO mice displayed hyper-locomotion and attenuated anxiety-like behavior in response to a dose of amphetamine that was insufficient to promote any behavioural responses in wild-type mice. Collectively, these results confirm that Sirt3 regulates mitochondrial proteome acetylation levels in brain tissue, and that the absence of Sirt3 increases the sensitivity of neural systems to amphetamine-induced behavioural responses.

2.
Cereb Cortex Commun ; 2(1): tgab004, 2021.
Article in English | MEDLINE | ID: mdl-34296153

ABSTRACT

Epilepsy is a chronic neurological disorder characterized by spontaneous recurrent seizures (SRS) and comorbidities. Kindling through repetitive brief stimulation of a limbic structure is a commonly used model of temporal lobe epilepsy. Particularly, extended kindling over a period up to a few months can induce SRS, which may simulate slowly evolving epileptogenesis of temporal lobe epilepsy. Currently, electroencephalographic (EEG) features of SRS in rodent models of extended kindling remain to be detailed. We explored this using a mouse model of extended hippocampal kindling. Intracranial EEG recordings were made from the kindled hippocampus and unstimulated hippocampal, neocortical, piriform, entorhinal, or thalamic area in individual mice. Spontaneous EEG discharges with concurrent low-voltage fast onsets were observed from the two corresponding areas in nearly all SRS detected, irrespective of associated motor seizures. Examined in brain slices, epileptiform discharges were induced by alkaline artificial cerebrospinal fluid in the hippocampal CA3, piriform and entorhinal cortical areas of extended kindled mice but not control mice. Together, these in vivo and in vitro observations suggest that the epileptic activity involving a macroscopic network may generate concurrent discharges in forebrain areas and initiate SRS in hippocampally kindled mice.

3.
Hum Mol Genet ; 29(23): 3744-3756, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33084871

ABSTRACT

Several X-linked neurodevelopmental disorders including Rett syndrome, induced by mutations in the MECP2 gene, and fragile X syndrome (FXS), caused by mutations in the FMR1 gene, share autism-related features. The mRNA coding for methyl CpG binding protein 2 (MeCP2) has previously been identified as a substrate for the mRNA-binding protein, fragile X mental retardation protein (FMRP), which is silenced in FXS. Here, we report a homeostatic relationship between these two key regulators of gene expression in mouse models of FXS (Fmr1 Knockout (KO)) and Rett syndrome (MeCP2 KO). We found that the level of MeCP2 protein in the cerebral cortex was elevated in Fmr1 KO mice, whereas MeCP2 KO mice displayed reduced levels of FMRP, implicating interplay between the activities of MeCP2 and FMRP. Indeed, knockdown of MeCP2 with short hairpin RNAs led to a reduction of FMRP in mouse Neuro2A and in human HEK-293 cells, suggesting a reciprocal coupling in the expression level of these two regulatory proteins. Intra-cerebroventricular injection of an adeno-associated viral vector coding for FMRP led to a concomitant reduction in MeCP2 expression in vivo and partially corrected locomotor hyperactivity. Additionally, the level of MeCP2 in the posterior cortex correlated with the severity of the hyperactive phenotype in Fmr1 KO mice. These results demonstrate that MeCP2 and FMRP operate within a previously undefined homeostatic relationship. Our findings also suggest that MeCP2 overexpression in Fmr1 KO mouse posterior cerebral cortex may contribute to the fragile X locomotor hyperactivity phenotype.


Subject(s)
Cerebral Cortex/pathology , Disease Models, Animal , Fragile X Mental Retardation Protein/physiology , Fragile X Syndrome/pathology , Gene Expression Regulation , Methyl-CpG-Binding Protein 2/physiology , Phenotype , Animals , Cerebral Cortex/metabolism , Female , Fragile X Syndrome/etiology , Fragile X Syndrome/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
4.
ACS Med Chem Lett ; 11(5): 706-712, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32435374

ABSTRACT

Tubastatin A, a tetrahydro-γ-carboline-capped selective HDAC6 inhibitor (HDAC6i), was rationally designed 10 years ago, and has become the best investigated HDAC6i to date. It shows efficacy in various neurological disease animal models, as HDAC6 plays a crucial regulatory role in axonal transport deficits, protein aggregation, as well as oxidative stress. In this work, we provide new insights into this HDAC6i by investigating the molecular basis of its interactions with HDAC6 through X-ray crystallography, determining its functional capability to elevate the levels of acetylated α-tubulin in vitro and in vivo, correlating PK/PD profiles to determine effective doses in plasma and brain, and finally assessing its therapeutic potential toward psychiatric diseases through use of the SmartCube screening platform.

5.
Neuroscience ; 445: 50-68, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32059984

ABSTRACT

Genetic neurodevelopmental disorders - that often include epilepsy as part of their phenotype - are a heterogeneous and clinically challenging spectrum of disorders in children. Although seizures often contribute significantly to morbidity in these affected populations, the mechanisms of epileptogenesis in these conditions remain poorly understood. Different model systems have been developed to aid in unraveling these mechanisms, which include a number of specific mutant mouse lines which genocopy specific general types of mutations present in patients. These mouse models have not only allowed for assessments of behavioral and electrographic seizure phenotypes to be ascertained, but also have allowed effects on the neurodevelopmental alterations and cognitive impairments associated with these disorders to be examined. In addition, these models play a role in advancing our understanding of these epileptic processes and developing preclinical therapeutics. The concordance of seizure phenotypes - in a select group of rare, genetic, neurodevelopmental disorders and epileptic encephalopathies - found between human patients and their model counterparts will be summarized. This review aims to assess whether models of Rett syndrome, CDKL5 deficiency disorder, Fragile-X syndrome, Dravet syndrome, and Ohtahara syndrome phenocopy the seizures seen in human patients.


Subject(s)
Epilepsy , Epileptic Syndromes , Neurodevelopmental Disorders , Spasms, Infantile , Animals , Epilepsy/genetics , Humans , Mice , Mutation , Neurodevelopmental Disorders/genetics , Protein Serine-Threonine Kinases/genetics , Seizures/genetics
6.
Front Genet ; 11: 613098, 2020.
Article in English | MEDLINE | ID: mdl-33488679

ABSTRACT

Epigenetic processes are critical for governing the complex spatiotemporal patterns of gene expression in neurodevelopment. One such mechanism is the dynamic network of post-translational histone modifications that facilitate recruitment of transcription factors or even directly alter chromatin structure to modulate gene expression. This is a tightly regulated system, and mutations affecting the function of a single histone-modifying enzyme can shift the normal epigenetic balance and cause detrimental developmental consequences. In this review, we will examine select neurodevelopmental conditions that arise from mutations in genes encoding enzymes that regulate histone methylation and acetylation. The methylation-related conditions discussed include Wiedemann-Steiner, Kabuki, and Sotos syndromes, and the acetylation-related conditions include Rubinstein-Taybi, KAT6A, genitopatellar/Say-Barber-Biesecker-Young-Simpson, and brachydactyly mental retardation syndromes. In particular, we will discuss the clinical/phenotypic and genetic basis of these conditions and the model systems that have been developed to better elucidate cellular and systemic pathological mechanisms.

7.
Front Pharmacol ; 10: 1077, 2019.
Article in English | MEDLINE | ID: mdl-31611787

ABSTRACT

Temporal lobe epilepsy is the most common and often drug-resistant type of epilepsy in the adult and aging populations and has great diversity in etiology, electro-clinical manifestations, and comorbidities. Kindling through repeated brief stimulation of limbic structures is a commonly used model of temporal lobe epilepsy. Particularly, extended kindling can induce spontaneous recurrent seizures in several animal species. However, kindling studies in middle-aged, aging, or aged animals remain scarce, and currently, little is known about kindling-induced behavioral changes in middle-aged/aging animals. We therefore attempted to provide more information in this area using a mouse model of extended hippocampal kindling. We conducted experiments in middle-aged mice (C57BL/6, male, 12-14 months of age) to model new-onset epilepsy in adult/aging populations. Mice experienced twice daily hippocampal stimulations or handling manipulations for 60-70 days and then underwent continuous electroencephalogram (EEG)-video monitoring to detect spontaneous recurrent seizures. Extended kindled mice consistently exhibited spontaneous recurrent seizures with mean incidences of 6-7 events per day, and these seizures featured EEG discharges and corresponding convulsions. The handling control mice showed neither seizure nor aberrant EEG activity. The two groups of mice underwent the Morris water maze test of spatial learning and memory 1-2 weeks after termination of the kindling stimulation or handling manipulation. During visible platform trials, the kindled mice took a longer distance and required more time than the control mice to find the platform. During hidden platform trials, the kindled mice showed no improvement over 5-day trials in finding the platform whereas the control mice improved significantly. During probe tests in which the hidden platform was removed, the kindled mice spent less time than the controls searching in the correct platform location. There were no significant differences between the kindled and control mice with respect to swim speed or total locomotor activity in an open-field test. Together, these observations indicate that the extended kindled mice with spontaneous recurrent seizures are impaired in spatial learning and memory as assessed by the Morris water maze test. We postulate that the extended hippocampal kindling in middle-aged mice may help explore epileptogenic mechanisms and comorbidities potentially relevant to new-onset temporal lobe epilepsy in adult and aging patients. Limitations and confounds of our present experiments are discussed to improve future examinations of epileptic comorbidities in extended kindled mice.

8.
Int J Mol Sci ; 20(7)2019 Mar 30.
Article in English | MEDLINE | ID: mdl-30935023

ABSTRACT

Alterations in the expression of the vascular endothelial growth factors (VEGF) A and B occur during blood⁻brain barrier (BBB) breakdown and angiogenesis following a brain injury. In this study, the temporal and spatial expression of VEGF-D and VEGF receptors-2 and -3 (VEGFR-2 and VEGFR-3, respectively) was determined at the mRNA and protein level in the rat cortical cold-injury model over a period of 0.5 to 6 days post-injury. In order to relate endothelial VEGF-D protein expression with BBB breakdown, dual labeling immunofluorescence was performed using antibodies to VEGF-D and to fibronectin, a marker of BBB breakdown. In control rats, VEGF-D signal was only observed in scattered perivascular macrophages in the cerebral cortex. The upregulation of VEGF-D mRNA expression was observed in the injury site between days 0.5 to 4, coinciding with the periods of BBB breakdown and angiogenesis. At the protein level, intracerebral vessels with BBB breakdown to fibronectin in the lesion on days 0.5 to 4 failed to show endothelial VEGF-D. Between days 0.5 to 6, increased VEGF-D immunoreactivity was noted in the endothelium of pial vessels overlying the lesion site, in neutrophils, macrophages, and free endothelial cells within the lesion. The upregulation of VEGFR-2 and -3 mRNA and protein expression was observed early post-injury on day 0.5. Although there was concurrent expression of VEGF-A, VEGF-B, and VEGF-D post-injury, differences in their spatial expression during BBB breakdown and angiogenesis suggest that they had specific and separate roles in these processes.


Subject(s)
Brain Injuries/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Fibronectins/metabolism , Male , Neovascularization, Physiologic , Rats , Rats, Wistar , Vascular Endothelial Growth Factor A/genetics
9.
ACS Chem Neurosci ; 10(3): 1679-1695, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30511829

ABSTRACT

Disease-modifying therapies are needed for Fragile X Syndrome (FXS), as at present there are no effective treatments or cures. Herein, we report on a tetrahydroquinoline-based selective histone deacetylase 6 (HDAC6) inhibitor SW-100, its pharmacological and ADMET properties, and its ability to improve upon memory performance in a mouse model of FXS, Fmr1-/- mice. This small molecule demonstrates good brain penetrance, low-nanomolar potency for the inhibition of HDAC6 (IC50 = 2.3 nM), with at least a thousand-fold selectivity over all other class I, II, and IV HDAC isoforms. Moreover, through its inhibition of the α-tubulin deacetylase domain of HDAC6 (CD2), in cells SW-100 upregulates α-tubulin acetylation with no effect on histone acetylation and selectively restores the impaired acetylated α-tubulin levels in the hippocampus of Fmr1-/- mice. Lastly, SW-100 ameliorates several memory and learning impairments in Fmr1-/- mice, thus modeling the intellectual deficiencies associated with FXS, and hence providing a strong rationale for pursuing HDAC6-based therapies for the treatment of this rare disease.


Subject(s)
Benzamides/pharmacology , Fragile X Syndrome/physiopathology , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Learning/drug effects , Memory/drug effects , Quinolines/pharmacology , Animals , Cognition/drug effects , Disease Models, Animal , Fragile X Syndrome/enzymology , Hippocampus/drug effects , Hippocampus/metabolism , Mice , Protein Processing, Post-Translational/drug effects
10.
Front Cell Neurosci ; 12: 278, 2018.
Article in English | MEDLINE | ID: mdl-30210302

ABSTRACT

The hippocampal circuitry is widely recognized as susceptible to ischemic injury and seizure generation. However, hippocampal contribution to acute non-convulsive seizures (NCS) in models involving middle cerebral artery occlusion (MCAO) remains to be determined. To address this, we occluded the middle cerebral artery in adult C57 black mice and monitored electroencephalographic (EEG) discharges from hippocampal and neocortical areas. Electrographic discharges in the absence of convulsive motor behaviors were observed within 90 min following occlusion of the middle cerebral artery. Hippocampal discharges were more robust than corresponding cortical discharges in all seizure events examined, and hippocampal discharges alone or with minimal cortical involvement were also observed in some seizure events. Seizure development was associated with ipsilateral hippocampal injuries as determined by subsequent histological examinations. We also introduced hypoxia-hypoglycemia episodes in mouse brain slices and examined regional hyperexcitable responses ex vivo. Extracellular recordings showed that the hippocampal CA3 region had a greater propensity for exhibiting single/multiunit activities or epileptiform field potentials following hypoxic-hypoglycemic (HH) episodes compared to the CA1, dentate gyrus, entorhinal cortical (EC) or neocortical regions. Whole-cell recordings revealed that CA3 pyramidal neurons exhibited excessive excitatory postsynaptic currents, attenuated inhibitory postsynaptic currents and intermittent or repetitive spikes in response to HH challenge. Together, these observations suggest that hippocampal discharges, possibly as a result of CA3 circuitry hyperexcitability, are a major component of acute NCS in a mouse model of MCAO.

11.
Front Cell Neurosci ; 12: 196, 2018.
Article in English | MEDLINE | ID: mdl-30090057

ABSTRACT

Sirtuin enzymes are a family of highly seven conserved protein deacetylases, namely SIRT1 through SIRT7, whose enzymatic activities require the cofactor nicotinamide adenine dinucleotide (NAD+). Sirtuins reside in different compartments within cells, and their activities have been shown to regulate a number of cellular pathways involved in but not limited to stress management, apoptosis and inflammatory responses. Given the importance of mitochondrial functional state in neurodegenerative conditions, the mitochondrial SIRT3 sirtuin, which is the primary deacetylase within mitochondria, has garnered considerable recent attention. It is now clear that SIRT3 plays a major role in regulating a host of mitochondrial molecular cascades that can contribute to both normal and pathophysiological processes. However, most of the currently available knowledge on SIRT3 stems from studies in non-neuronal cells, and the consequences of the interactions between SIRT3 and its targets in the CNS are only beginning to be elucidated. In this review, we will summarize current advances relating to SIRT3, and explore how its known functions could influence brain physiology.

12.
Front Pharmacol ; 9: 451, 2018.
Article in English | MEDLINE | ID: mdl-29867462

ABSTRACT

Epilepsy is a common neurological disorder characterized by naturally-occurring spontaneous recurrent seizures and comorbidities. Kindling has long been used to model epileptogenic mechanisms and to assess antiepileptic drugs. In particular, extended kindling can induce spontaneous recurrent seizures without gross brain lesions, as seen clinically. To date, the development of spontaneous recurrent seizures following extended kindling, and the effect of the antiepileptic drugs on these seizures are not well understood. In the present study we aim to develop a mouse model of extended hippocampal kindling for the first time. Once established, we plan to evaluate the effect of three different antiepileptic drugs on the development of the extended-hippocampal-kindled-induced spontaneous recurrent seizures. Male C57 black mice were used for chronic hippocampal stimulations or handling manipulations (twice daily for up to 70 days). Subsequently, animals underwent continuous video/EEG monitoring for seizure detection. Spontaneous recurrent seizures were consistently observed in extended kindled mice but no seizures were detected in the control animals. The aforementioned seizures were generalized events characterized by hippocampal ictal discharges and concurrent motor seizures. Incidence and severity of the seizures was relatively stable while monitored over a few months after termination of the hippocampal stimulation. Three antiepileptic drugs with distinct action mechanisms were tested: phenytoin, lorazepam and levetiracetam. They were applied via intra-peritoneal injections at anticonvulsive doses and their effects on the spontaneous recurrent seizures were analyzed 10-12 h post-injection. Phenytoin (25 mg/kg) and levetiracetam (400 mg/kg) abolished the spontaneous recurrent seizures. Lorazepam (1.5 mg/kg) decreased motor seizure severity but did not reduce the incidence and duration of corresponding hippocampal discharges, implicating its inhibitory effects on seizure spread. No gross brain lesions were observed in a set of extended hippocampal kindled mice submitted to histological evaluation. All these data suggests that our model could be considered as a novel mouse model of extended hippocampal kindling. Some limitations remain to be considered.

13.
Int J Dev Neurosci ; 69: 23-31, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29842890

ABSTRACT

TRPM7 and TRPM2 are non-specific cation channels of the Transient Receptor Potential channel superfamily. Each channel has gained attention for their potential to mediate oxidative and anoxic cell death (Rama and García, 2016; Naziroglu, 2011a; Abiria et al., 2017; Sun, 2017), however their physiological expression and roles in the developing brain remain poorly defined. We employed real-time reverse transcription PCR to examine mRNA expression of TRPM7 and TRPM2 in the developing rat brain and brain-specific cell types. We determined the temporal and spatial expression patterns at four developmental time points (postnatal day 7, 14, 21, and 90) in four critical regions of the brain (cortex, hippocampus, striatum, and cerebellum) and examined gene expression in neuronal, astrocytic, and microglial primary cell cultures. Our results revealed that TRPM7 mRNA expression peaks in the cortex at 2-weeks after birth, and thus correlates most closely with a period of rat brain development associated with neurite outgrowth, which is heightened at 2-weeks after birth. Our cell-specific gene expression assays revealed that TRPM7 was expressed at equivalent levels in neurons, astrocytes, and microglia. Conversely, TRPM2 was most highly expressed in microglia with little expression in neurons and astrocytes. In the hippocampus and striatum, the expression profile of TRPM2 parallels the perinatal expression timeline for microglial infiltration and maturation in the rat brain. Microglial maturation is highest from the time of birth, up to 7-days, but subsequently declines. The latter developmental expression profiles indicate a role for TRPM2 in microglial activation.


Subject(s)
Brain Chemistry/genetics , Brain/growth & development , RNA, Messenger/biosynthesis , TRPM Cation Channels/biosynthesis , Aging/genetics , Aging/metabolism , Animals , Astrocytes/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Male , Microglia/metabolism , Neostriatum/cytology , Neostriatum/metabolism , Neurons/metabolism , Primary Cell Culture , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , TRPM Cation Channels/genetics
15.
Epilepsy Res ; 140: 177-183, 2018 02.
Article in English | MEDLINE | ID: mdl-29414525

ABSTRACT

Rett Syndrome is a neurodevelopmental disorder caused primarily by mutations in the gene encoding Methyl-CpG-binding protein 2 (MECP2). Spontaneous epileptiform activity is a common co-morbidity present in Rett syndrome, and hyper-excitable neural networks are present in MeCP2-deficient mouse models of Rett syndrome. In this study we conducted a longitudinal assessment of spontaneous cortical electrographic discharges in female MeCP2-deficient mice and defined the pharmacological responsiveness of these discharges to anti-convulsant drugs. Our data show that cortical discharge activity in female MeCP2-deficient mice progressively increases in severity as the mice age, with discharges being more frequent and of longer durations at 19-24 months of age compared to 3 months of age. Semiologically and pharmacologically, this basal discharge activity in female MeCP2-deficient mice displayed electroclinical properties consistent with absence epilepsy. Only rarely were convulsive seizures observed in these mice at any age. Since absence epilepsy is infrequently observed in Rett syndrome patients, these results indicate that the predominant spontaneous electroclinical phenotype of MeCP2-deficient mice we examined does not faithfully recapitulate the most prevalent seizure types observed in affected patients.


Subject(s)
Disease Models, Animal , Methyl-CpG-Binding Protein 2/deficiency , Rett Syndrome , Aging/physiology , Animals , Anticonvulsants/pharmacology , Brain/drug effects , Brain/physiopathology , Electrocorticography , Epilepsy, Absence/drug therapy , Epilepsy, Absence/physiopathology , Longitudinal Studies , Methyl-CpG-Binding Protein 2/genetics , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Rett Syndrome/drug therapy , Rett Syndrome/physiopathology
16.
Front Behav Neurosci ; 11: 172, 2017.
Article in English | MEDLINE | ID: mdl-28959196

ABSTRACT

We describe here a simple, cost-effective apparatus for continuous tethered electroencephalographic (EEG) monitoring of spontaneous recurrent seizures in mice. We used a small, low torque slip ring as an EEG commutator, mounted the slip ring onto a standard mouse cage and connected rotary wires of the slip ring directly to animal's implanted headset. Modifications were made in the cage to allow for a convenient installation of the slip ring and accommodation of animal ambient activity. We tested the apparatus for hippocampal EEG recordings in adult C57 black mice. Spontaneous recurrent seizures were induced using extended hippocampal kindling (≥95 daily stimulation). Control animals underwent similar hippocampal electrode implantations but no stimulations were given. Combined EEG and webcam monitoring were performed for 24 h daily for 5-9 consecutive days. During the monitoring periods, the animals moved and accessed water and food freely and showed no apparent restriction in ambient cage activities. Ictal-like hippocampal EEG discharges and concurrent convulsive behaviors that are characteristics of spontaneous recurrent seizures were reliably recorded in a majority of the monitoring experiments in extendedly kindled but not in control animals. However, 1-2 rotary wires were disconnected from the implanted headset in some animals after continuous recordings for ≥5 days. The key features and main limitations of our recording apparatus are discussed.

17.
PLoS One ; 12(7): e0181654, 2017.
Article in English | MEDLINE | ID: mdl-28759636

ABSTRACT

BACKGROUND: Malignant gliomas are highly invasive, difficult to treat, and account for 2% of cancer deaths worldwide. Glioblastoma Multiforme (GBM) comprises the most common and aggressive intracranial tumor. The study hypothesis is to investigate the modification of Photodynamic Therapy (PDT) efficacy by mild hypothermia leads to increased glioma cell kill while protecting normal neuronal structures. METHODS: Photosensitizer accumulation and PDT efficacy in vitro were quantified in various glioma cell lines, primary rat neurons, and astrocytes. In vivo studies were carried out in healthy brain and RG2 glioma of naïve Fischer rats. Hypothermia was induced at 1 hour pre- to 2 hours post-PDT, with ALA-PpIX accumulation and PDT treatments effects on tumor and normal brain PDT quantified using optical spectroscopy, histology, immunohistochemistry, MRI, and survival studies, respectively. FINDINGS: In vitro studies demonstrated significantly improved post-PDT survival in primary rat neuronal cells. Rat in vivo studies confirmed a neuroprotective effect to hypothermia following PpIX mediated PDT by T2 mapping at day 10, reflecting edema/inflammation volume reduction. Mild hypothermia increased PpIX fluorescence in tumors five-fold, and the median post-PDT rat survival time (8.5 days normothermia; 14 days hypothermia). Histology and immunohistochemistry show close to complete cellular protection in normal brain structures under hypothermia. CONCLUSIONS: The benefits of hypothermia on both normal neuronal tissue as well as increased PpIX fluorescence and RG2 induced rat survival strongly suggest a role for hypothermia in photonics-based surgical techniques, and that a hypothermic intervention could lead to considerable patient outcome improvements.


Subject(s)
Aminolevulinic Acid/pharmacology , Brain Neoplasms/drug therapy , Glioma/drug therapy , Hypothermia, Induced/methods , Photochemotherapy/methods , Protoporphyrins/pharmacology , Animals , Animals, Newborn , Astrocytes/drug effects , Brain/drug effects , Cell Line, Tumor , Cell Survival , Drug Screening Assays, Antitumor , Female , Humans , Magnetic Resonance Imaging , Male , Neurons/drug effects , Photosensitizing Agents/pharmacology , Rats , Rats, Inbred F344 , Rats, Wistar , Temperature
18.
Neurobiol Dis ; 106: 133-146, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28673739

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative movement disorder, which affects approximately 1-2% of the population over 60years of age. Current treatments for PD are symptomatic, and the pathology of the disease continues to progresses over time until palliative care is required. Mitochondria are key players in the pathology of PD. Genetic and post mortem studies have shown a large number of mitochondrial abnormalities in the substantia nigra pars compacta (SNc) of the parkinsonian brain. Furthermore, physiologically, mitochondria of nigral neurons are constantly under unusually high levels of metabolic stress because of the excitatory properties and architecture of these neurons. The protein deacetylase, Sirtuin 3 (SIRT3) reduces the impact subcellular stresses on mitochondria, by stabilising the electron transport chain (ETC), and reducing oxidative stress. We hypothesised that viral overexpression of myc-tagged SIRT3 (SIRT3-myc) would slow the progression of PD pathology, by enhancing the functional capacity of mitochondria. For this study, SIRT3-myc was administered both before and after viral induction of parkinsonism with the AAV-expressing mutant (A53T) α-synuclein. SIRT3-myc corrected behavioural abnormalities, as well as changes in striatal dopamine turnover. SIRT3-myc also prevented degeneration of dopaminergic neurons in the SNc. These effects were apparent, even when SIRT3-myc was transduced after the induction of parkinsonism, at a time point when cell stress and behavioural abnormalities are already observed. Furthermore, in an isolated mitochondria nigral homogenate prepared from parkinsonian SIRT3-myc infected animals, SIRT3 targeted the mitochondria, to reduce protein acetylation levels. Our results demonstrate that transduction of SIRT3 has the potential to be an effective disease-modifying strategy for patients with PD. This study also provides potential mechanisms for the protective effects of SIRT3-myc.


Subject(s)
Mitochondria/metabolism , Neurons/metabolism , Neuroprotection/physiology , Parkinsonian Disorders/metabolism , Sirtuin 3/metabolism , alpha-Synuclein/metabolism , Acetylation , Animals , Cell Line, Tumor , Dependovirus/genetics , Female , Genetic Vectors , Humans , Male , Mice, Inbred C57BL , Mitochondria/pathology , Mutation , Neurons/pathology , Organelle Biogenesis , Parkinsonian Disorders/pathology , Rats, Sprague-Dawley , Sirtuin 3/genetics , Substantia Nigra/metabolism , Substantia Nigra/pathology , alpha-Synuclein/genetics
19.
ACS Med Chem Lett ; 8(5): 510-515, 2017 May 11.
Article in English | MEDLINE | ID: mdl-28523102

ABSTRACT

A series of nonhydroxamate HDAC6 inhibitors were prepared in our effort to develop potent and selective compounds for possible use in central nervous system (CNS) disorders, thus obviating the genotoxicity often associated with the hydroxamates. Halogens are incorporated in the cap groups of the designed mercaptoacetamides in order to increase brain accessibility. The indole analogue 7e and quinoline analogue 13a displayed potent HDAC6 inhibitory activity (IC50, 11 and 2.8 nM) and excellent selectivity against HDAC1. Both 7e and 13a together with their ester prodrug 14 and disulfide prodrugs 15 and 16 were found to be effective in promoting tubulin acetylation in HEK cells. The disulfide prodrugs 15 and 16 also released a stable concentration of 7e and 13a upon microsomal incubation. Administration of 15 and 16in vivo was found to trigger an increase of tubulin acetylation in mouse cortex. These results suggest that further exploration of these compounds for the treatment of CNS disorders is warranted.

20.
Front Cell Neurosci ; 11: 58, 2017.
Article in English | MEDLINE | ID: mdl-28352216

ABSTRACT

First described over 50 years ago, Rett syndrome (RTT) is a neurodevelopmental disorder caused primarily by mutations of the X-linked MECP2 gene. RTT affects predominantly females, and has a prevalence of roughly 1 in every 10,000 female births. Prior to the discovery that mutations of MECP2 are the leading cause of RTT, there were suggestions that RTT could be a mitochondrial disease. In fact, several reports documented altered mitochondrial structure, and deficiencies in mitochondrial enzyme activity in different cells or tissues derived from RTT patients. With the identification of MECP2 as the causal gene, interest largely shifted toward defining the normal function of MeCP2 in the brain, and how its absence affects the neurodevelopment and neurophysiology. Recently, though, interest in studying mitochondrial function in RTT has been reignited, at least in part due to observations suggesting systemic oxidative stress does play a contributing role in RTT pathogenesis. Here we review data relating to mitochondrial alterations at the structural and functional levels in RTT patients and model systems, and present a hypothesis for how the absence of MeCP2 could lead to altered mitochondrial function and elevated levels of cellular oxidative stress. Finally, we discuss the prospects for treating RTT using interventions that target specific aspects of mitochondrial dysfunction and/or oxidative stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...