Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 259: 127414, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32599381

ABSTRACT

The photocatalytic degradation of simazine (SIM) was investigated using zinc oxide/graphene oxide (ZnO/GO) composite materials under visible light irradiation. The reaction kinetics was studied to optimize the reaction parameters for efficient degradation of SIM. Batch studies were performed to investigate the effects of initial reaction pH, the loading of the ZnO onto GO, and mass of catalyst on the removal of SIM from aqueous solution. A pH of 2 was determined to be the optimal reaction pH for the different ZnO-loaded GO catalysts. In addition, a mass of 40 mg of catalyst in the reaction was observed to be the most effective for the catalysts synthesized using 20 and 30 mmol of Zn2+ ions; whereas a mass of 10 mg was most effective for the ZnO/GO composite material synthesized using 10 mmol Zn2+ ions. The reaction was observed to follow a second-order kinetics for the degradation process. Furthermore, the synthesized ZnO/GO composite catalysts resulted in higher reaction rates than those observed for pure ZnO. The 30 mmol ZnO/GO composite expressed a rate of SIM degradation ten times greater than the rate observed for pure ZnO, and sixty-two times greater than the rate of photolysis. In addition, the catalyst cycling exhibited a constant photocatalytic activity for the ZnO/GO composite over three reaction cycles without the need of a conditioning cycle.


Subject(s)
Graphite/chemistry , Simazine/chemistry , Zinc Oxide/chemistry , Catalysis , Light , Photolysis
2.
Microchem J ; 141: 188-196, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30510325

ABSTRACT

Tin oxide, SnO2, nanomaterial was synthesized and tested for the removal of Cu2+ and Ni2+ ions from aqueous solutions. Various parameters for the binding were investigated in batch studied, which included pH, time, temperature, and interferences. In addition, isotherm studied were performed to determine the maximum binding capacity for both Cu2+ and Ni2+ ions. The optimal binding pH determined from the effects of pH were to be at pH 5 for both the Cu2+ and Ni2+ ions. The isotherm studies were performed at temperatures of 4°C, 25 °C, and 45 °C for both the Cu2+ and Ni2+ ions and were found to follow the Langmuir isotherm model. The binding capacities for the Cu2+ ions were 2.63 mg/g, 2.95 mg/g and 3.27 mg/g at the aforementioned temperatures, respectively. Whereas the binding capacities for Ni2+ were 0.79 mg/g, 1.07 mg/g, and 1.46 mg/g at the respective temperatures. The determined thermodynamic parameters for the binding showed that the binding processes for the reactions were endothermic, as the ΔG was observed to decrease with decreasing temperatures. As well the ΔH was 28.73 kJ/mol for Cu2+ (III) and 13.37 kJ/mol for Ni2+. The ΔS was observed to be 92.65 J/mol for Cu2+ and 54.53 J/mol for Ni2+. The free energy of adsorption for the Cu2+ was determined to be 13.99 kJ/mol and the activation energy for the binding of Ni2+ was determined to be 8.09 KJ/mol. The activation energy data indicate that the reaction was occurring through chemisorption.

3.
Microchem J ; 133: 614-621, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29081543

ABSTRACT

A Rancieite type material (K2Mn4O9) nanomaterial was synthesized and tested for the removal of chromium (III) and chromium (VI) from aqueous solutions. The synthesized nanomaterial was characterized using powder XRD and SEM. XRD showed weak diffraction peaks at only at the angles associated with K2Mn4O9. The SEM corroborated that the nanoparticles were present; however, the nanoparticles were clustered into larger aggregates. Batch studies were performed to determine the optimum pH, capacity, time dependency, interferences, and the thermodynamics of the binding. The optimum pH for the binding of Cr(III) and Cr(VI) were determined to be pH 5 and pH 2, respectively. Isotherm studies were performed at temperatures of 4 , 25 , and 45 for Cr(III) and Cr(VI) and showed binding capacities of 21.7 mg/g, 36.5 mg/g, 41.8 mg/g for Cr(III). The Cr(VI) binding capacities were 4.22 mg/g, 4.08 mg/g, and 3.25 mg/g at the respective temperatures. The thermodynamic studies showed that the binding processes for the reactions were spontaneous and endothermic, with a ΔH was 17.54 kJ/mol for Cr(III) and 6.05 kJ/mol for Cr(VI). The of sorption for Cr(III) were determined to be -3.88 kJ/mol, -5.83 kJ/mol and -7.03 kJ/mol at the aforementioned temperatures. The ΔG values for the Cr(VI) sorption were determined to be -4.89 kJ/mol, -5.64 kJ/mol, and -6.05 kJ/mol. In addition, the ΔS values for Cr(III) and Cr(VI) were determined to be 77.92 J/mol and 39.49 J/mol, respectively. The thermodynamics indicate that the binding of Cr(III) and Cr(VI) is spontaneous and endothermic.

4.
Chem Eng J ; 290: 428-437, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27065750

ABSTRACT

In the present study, pyrrhotite was used to remove arsenite and arsenate from aqueous solutions. The Fe7S8 was synthesized using a solvothermal synthetic method and it was characterized using XRD and SEM micrographs. Furthermore, the particle size for the nanomaterial Fe7S8 was determined to be 29.86 ± 0.87 nm using Scherer's equation. During the pH profile studies, the optimum pH for the binding of As (III) and As (V) was determined to be pH 4. Batch isotherm studies were performed to determine the binding capacity of As(III) and As(V), which was determined to be 14.3 mg/g and 31.3 mg/g respectively for 25°C. The thermodynamic studies indicated that the ΔG for the sorption of As(III) and As(V) ranged from -115.5 to -0.96 kJ/mol, indicating a spontaneous process was occurring. The enthalpy indicated that an exothermic reaction was occurring during the adsorption in which the ΔH was -53.69 kJ/mol and -32.51 kJ/mol for As(III) and As(V) respectively. In addition, ΔS values for the reaction had negative values of -160.46 J/K and -99.77 J/K for the adsorption of As(III) and As(V) respectively which indicated that the reaction was spontaneous at low temperatures. Furthermore, the sorption for As(III) and As(V) was determined to follow the second order kinetics adsorption model.

5.
Science ; 225(4660): 411-4, 1984 Jul 27.
Article in English | MEDLINE | ID: mdl-17813261

ABSTRACT

Anomalously high values of atmospheric angular momentum and length of day were observed in late January 1983. This signal in the time series of these two coupled quantities appears to have been a consequence of the equatorial Pacific Ocean warming event of 1982-1983.

SELECTION OF CITATIONS
SEARCH DETAIL
...