Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(7)2023 07 21.
Article in English | MEDLINE | ID: mdl-37515277

ABSTRACT

Begomoviruses, which belong to the Geminiviridae family, are intracellular parasites transmitted by whiteflies to dicotyledonous plants thatsignificantly damage agronomically relevant crops. These nucleus-replicating DNA viruses move intracellularly from the nucleus to the cytoplasm and then, like other plant viruses, cause disease by spreading systemically throughout the plant. The transport proteins of begomoviruses play a crucial role in recruiting host components for the movement of viral DNA within and between cells, while exhibiting functions that suppress the host's immune defense. Pioneering studies on species of the Begomovirus genus have identified specific viral transport proteins involved in intracellular transport, cell-to-cell movement, and systemic spread. Recent research has primarily focused on viral movement proteins and their interactions with the cellular host transport machinery, which has significantly expanded understanding on viral infection pathways. This review focuses on three components within this context: (i) the role of viral transport proteins, specifically movement proteins (MPs) and nuclear shuttle proteins (NSPs), (ii) their ability to recruit host factors for intra- and intercellular viral movement, and (iii) the suppression of antiviral immunity, with a particular emphasis on bipartite begomoviral movement proteins.


Subject(s)
Begomovirus , Begomovirus/genetics , DNA, Viral/genetics , Viral Proteins/genetics , Carrier Proteins/metabolism , Defense Mechanisms , Plant Diseases
2.
Front Plant Sci ; 11: 398, 2020.
Article in English | MEDLINE | ID: mdl-32322262

ABSTRACT

Begomoviruses (Geminiviridae family) represent a severe constraint to agriculture worldwide. As ssDNA viruses that replicate in the nuclei of infected cells, the nascent viral DNA has to move to the cytoplasm and then to the adjacent cell to cause disease. The begomovirus nuclear shuttle protein (NSP) assists the intracellular transport of viral DNA from the nucleus to the cytoplasm and cooperates with the movement protein (MP) for the cell-to-cell translocation of viral DNA to uninfected cells. As a facilitator of intra- and intercellular transport of viral DNA, NSP is predicted to associate with host proteins from the nuclear export machinery, the intracytoplasmic active transport system, and the cell-to-cell transport complex. Furthermore, NSP functions as a virulence factor that suppresses antiviral immunity against begomoviruses. In this review, we focus on the protein-protein network that converges on NSP with a high degree of centrality and forms an immune hub against begomoviruses. We also describe the compatible host functions hijacked by NSP to promote the nucleocytoplasmic and intracytoplasmic movement of viral DNA. Finally, we discuss the NSP virulence function as a suppressor of the recently described NSP-interacting kinase 1 (NIK1)-mediated antiviral immunity. Understanding the NSP-host protein-protein interaction (PPI) network will probably pave the way for strategies to generate more durable resistance against begomoviruses.

3.
Plant Sci ; 292: 110410, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32005374

ABSTRACT

The Geminiviridae family is one of the most successful and largest families of plant viruses that infect a large variety of important dicotyledonous and monocotyledonous crops and cause significant yield losses worldwide. This broad spectrum of host range is only possible because geminiviruses have evolved sophisticated strategies to overcome the arsenal of antiviral defenses in such diverse plant species. In addition, geminiviruses evolve rapidly through recombination and pseudo-recombination to naturally create a great diversity of virus species with divergent genome sequences giving the virus an advantage over the host recognition system. Therefore, it is not surprising that efficient molecular strategies to combat geminivirus infection under open field conditions have not been fully addressed. In this review, we present the anti-geminiviral arsenal of plant defenses, the evolved virulence strategies of geminiviruses to overcome these plant defenses and the most recent strategies that have been engineered for transgenic resistance. Although, the in vitro reactivation of suppressed natural defenses as well as the use of RNAi and CRISPR/Cas systems hold the potential for achieving broad-range resistance and/or immunity, potential drawbacks have been associated with each case.


Subject(s)
CRISPR-Cas Systems , Geminiviridae/physiology , Host-Pathogen Interactions , Plant Diseases/immunology , Plant Immunity/genetics , RNA Interference , Crops, Agricultural/genetics , Crops, Agricultural/immunology , Disease Resistance/genetics , Genetic Engineering , Plant Diseases/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...