Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurol ; 365: 114412, 2023 07.
Article in English | MEDLINE | ID: mdl-37075967

ABSTRACT

Normal pressure hydrocephalus (NPH) compromises the morphology of the corpus callosum (CC). This study aims to determine whether 60- or 120-day NPH disrupts the cytoarchitecture and functioning of white matter (WM) and oligodendrocyte precursor cells (OPCs) and establish whether these changes are reversible after hydrocephalus treatment. NPH was induced in CD1 adult mice by inserting an obstructive lamina in the atrium of the aqueduct of Sylvius. Five groups were assembled: sham-operated controls (60 and 120 days), NPH groups (60 and 120 days), and the hydrocephalus-treated group (obstruction removal after 60-d hydrocephalus). We analyzed the cellular integrity of the CC by immunohistochemistry, TUNEL analysis, Western blot assays, and transmission electron microscopy (TEM). We found a reduction in the width of the CC at 60 and 120 days of NPH. TEM analysis demonstrated myelin abnormalities, degenerative changes in the WM, and an increase in the number of hyperdense (dark) axons that were associated with significant astrogliosis, and microglial reactivity. Hydrocephalus also caused a decrease in the expression of myelin-related proteins (MOG and CNPase) and reduced proliferation and population of OPCs, resulting in fewer mature oligodendrocytes. Hydrocephalus resolution only recovers the OPC proliferation and MOG protein density, but the rest of the WM abnormalities persisted. Interestingly, all these cellular and molecular anomalies occur in the absence of behavioral changes. The results suggest that NPH severely disrupts the myelin integrity and affects the OPC turnover in the CC. Remarkably, most of these deleterious events persist after hydrocephalus treatment, which suggests that a late treatment conveys irreversible changes in the WM of CC.


Subject(s)
Hydrocephalus, Normal Pressure , Oligodendrocyte Precursor Cells , Mice , Animals , Corpus Callosum , 2',3'-Cyclic-Nucleotide Phosphodiesterases/genetics , Myelin Sheath , Oligodendroglia , Myelin Proteins , Cell Proliferation
2.
Behav Processes ; 189: 104443, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34139283

ABSTRACT

Inaccurate and distorted timing are associated with neurodegenerative disorders such as Alzheimer's disease and schizophrenia in humans, which generates interest in the discovery and understanding of the factors behind such timing difficulties. Timing research in mice has taken an important role, because the availability of genetically-altered strains allows establishing the causal role of specific genes on such neurodegenerative disorders. Nevertheless, few studies have considered mice's sex and some have found sex differences in timing, although results are not yet conclusive. We tested female and male CD1 mice, an outbred strain not yet studied in a peak procedure. By varying the percentage of peak trials and the presence of a gap and/or a distractor in the tests, we found no sex differences in accuracy, precision, or attention. Both females and males followed a stop-clock strategy after distractor and gap + distractor trials. This suggests that both male and female CD1 mice may be exposed to a peak procedure to study factors associated to neurotoxicology or neurogenesis.


Subject(s)
Alzheimer Disease , Attention , Animals , Female , Male , Mice , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...