Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Cells ; 10(6)2021 06 01.
Article in English | MEDLINE | ID: mdl-34205916

ABSTRACT

Multiple myeloma (MM) is characterized by an accumulation of malignant plasma cells (PCs) in the bone marrow (BM). The amplification of 1q21 is one of the most common cytogenetic abnormalities occurring in around 40% of de novo patients and 70% of relapsed/refractory MM. Patients with this unfavorable cytogenetic abnormality are considered to be high risk with a poor response to standard therapies. The gene(s) driving amplification of the 1q21 amplicon has not been fully studied. A number of clear candidates are under investigation, and some of them (IL6R, ILF2, MCL-1, CKS1B and BCL9) have been recently proposed to be potential drivers of this region. However, much remains to be learned about the biology of the genes driving the disease progression in MM patients with 1q21 amp. Understanding the mechanisms of these genes is important for the development of effective targeted therapeutic approaches to treat these patients for whom effective therapies are currently lacking. In this paper, we review the current knowledge about the pathological features, the mechanism of 1q21 amplification, and the signal pathway of the most relevant candidate genes that have been suggested as possible therapeutic targets for the 1q21 amplicon.


Subject(s)
Chromosomes, Human, Pair 1 , Gene Amplification , Multiple Myeloma , Neoplasm Proteins , Signal Transduction , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 1/metabolism , Humans , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Multiple Myeloma/therapy , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism
2.
Cancers (Basel) ; 12(11)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33167336

ABSTRACT

Multiple myeloma (MM) cells consume huge amounts of glutamine and, as a consequence, the amino acid concentration is lower-than-normal in the bone marrow (BM) of MM patients. Here we show that MM-dependent glutamine depletion induces glutamine synthetase in stromal cells, as demonstrated in BM biopsies of MM patients, and reproduced in vitro by co-culturing human mesenchymal stromal cells (MSCs) with MM cells. Moreover, glutamine depletion hinders osteoblast differentiation of MSCs, which is also severely blunted by the spent, low-glutamine medium of MM cells, and rescued by glutamine restitution. Glutaminase and the concentrative glutamine transporter SNAT2 are induced during osteoblastogenesis in vivo and in vitro, and both needed for MSCs differentiation, pointing to enhanced the requirement for the amino acid. Osteoblastogenesis also triggers the induction of glutamine-dependent asparagine synthetase (ASNS), and, among non-essential amino acids, asparagine rescues differentiation of glutamine-starved MSCs, by restoring the transcriptional profiles of differentiating MSCs altered by glutamine starvation. Thus, reduced asparagine availability provides a mechanistic link between MM-dependent Gln depletion in BM and impairment of osteoblast differentiation. Inhibition of Gln metabolism in MM cells and supplementation of asparagine to stromal cells may, therefore, constitute novel approaches to prevent osteolytic lesions in MM.

3.
J Clin Med ; 9(9)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899714

ABSTRACT

The monoclonal antibodies (mAbs) have significantly changed the treatment of multiple myeloma (MM) patients. However, despite their introduction, MM remains an incurable disease. The mAbs currently used for MM treatment were developed with different mechanisms of action able to target antigens, such as cluster of differentiation 38 (CD38) and SLAM family member 7 (SLAMF7) expressed by both, MM cells and the immune microenvironment cells. In this review, we focused on the mechanisms of action of the main mAbs approved for the therapy of MM, and on the possible novel approaches to improve MM cell killing by mAbs. Actually, the combination of anti-CD38 or anti-SLAMF7 mAbs with the immunomodulatory drugs significantly improved the clinical effect in MM patients. On the other hand, pre-clinical evidence indicates that different approaches may increase the efficacy of mAbs. The use of trans-retinoic acid, the cyclophosphamide or the combination of anti-CD47 and anti-CD137 mAbs have given the rationale to design these types of combinations therapies in MM patients in the future. In conclusion, a better understanding of the mechanism of action of the mAbs will allow us to develop novel therapeutic approaches to improve their response rate and to overcome their resistance in MM patients.

SELECTION OF CITATIONS
SEARCH DETAIL