Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 19(27): 17661-17669, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28671220

ABSTRACT

Solid solutions of ceria and praseodymia are highly relevant for electrochemical applications as the incorporation of praseodymium into the ceria lattice shifts the range of mixed ionic electronic conductivity to higher oxygen partial pressures. To better understand the influence of praseodymium substitution on the transport processes and oxygen storage capacity in ceria, single crystals of ceria substituted with 14 mol% praseodymium have been investigated, obtaining the bulk properties without the influence of grain boundaries. Beside the characterization of structural changes caused by the substitution using XRD and Raman spectroscopy, the electrochemical transport properties of ceria-praseodymia single crystals are reported. Measurements of the total electrical conductivity, the ionic transference number and the non-stoichiometry of Ce0.85Pr0.14Zr0.01O2-δ were performed in an oxygen partial pressure range of -25 < lg[p(O2)/bar] < 0 at 700 °C. With praseodymium being redox active itself, higher values of oxygen deficiency and electrical conductivity than in pure ceria have been observed in the high oxygen partial pressure region, while no significant structural changes occur due to the similar ionic radii of both cations. From measurements of the impedance at different temperatures, the migration enthalpy for the electronic charge carriers has been determined. By analysing the non-stoichiometry at 700 °C using a defect chemical model it was also possible to determine the equilibrium constants of Pr and Ce reduction in Ce0.85Pr0.14Zr0.01O2-δ single crystals.

2.
Phys Chem Chem Phys ; 17(10): 6844-57, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25672809

ABSTRACT

Mayenite (Ca12Al14O33) is a highly interesting functional material not only in view of its unique crystal structure as a cage compound but also for its variety of possible applications. Its ability to incorporate foreign ions into the cage structure opens the possibility to create new types of solid electrolytes and even electrides. Therefore, the conductivity of various anion substituted mayenites was measured as a function of temperature. Due to controversial reports on the stability of mayenite under specific thermodynamic conditions (dry, wet, reducing, and high temperature), a comprehensive study on the stability was performed. Mayenite is clearly not stable under dry conditions (ppm H2O < 100) at temperatures above 1050 °C, and thus, the mayenite phase vanishes from the calcium aluminate phase diagram below a minimum humidity. Two decomposition reactions were observed and are described in detail. To get further insight into the mechanism of hydration of mayenite, the conductivity was measured as a function of water vapour pressure in a range of -5 ≤ lg[pH2O/bar] ≤ -1.6 at temperatures ranging from 1000 °C ≤ θ ≤ 1200 °C. The hydration isotherms are described with high accuracy by the underlying point defect model, which is confirmed in a wide range of water vapour pressure.

3.
Phys Chem Chem Phys ; 16(46): 25583-600, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25351862

ABSTRACT

The ternary solid solution CeO2-ZrO2 is known for its superior performance as an oxygen storage catalyst in exhaust gas catalysis (e.g. TWC), although the defect chemical background of these outstanding properties is not fully understood quantitatively. Here, a comprehensive experimental study is reported regarding defects and defect-related transport properties of cubic stabilized single crystalline (CexZr1-x)0.8Y0.2O1.9-δ (0 ≤x≤ 1) solid solutions as a model system for CeO2-ZrO2. The constant fraction of yttria was chosen in order to fix a defined concentration of oxygen vacancies and to stabilize the cubic fluorite-type lattice for all Ce/Zr ratios. Measurements of the total electrical conductivity, the partial electronic conductivity, the ionic transference number and the non-stoichiometry (oxygen deficiency, oxygen storage capacity) were performed in the oxygen partial pressure range -25 < lg pO2/bar < 0 and for temperatures between 500 °C and 750 °C. The total conductivity at low pO2 is dominated by electronic transport. A strong deviation from the widely accepted ideal solution based point defect model was observed. An extended point defect model was developed using defect activities rather than concentrations in order to describe the point defect reactions in CeO2-ZrO2-Y2O3 properly. It served to obtain good quantitative agreement with the measured data. By a combination of values for non-stoichiometries and for electronic conductivities, the electron mobility could be calculated as a function of pO2, ranging between 10(-2) cm(2) V(-1) s(-1) and 10(-5) cm(2) V(-1) s(-1). Finally, the origin of the high oxygen storage capacity and superior catalytic promotion performance at a specific ratio of n(Ce)/n(Zr) ≈ 1 was attributed to two main factors: (1) a strongly enhanced electronic conductivity in the high and medium pO2 range qualifies the material to be a good mixed conductor, which is essential for a fast oxygen exchange and (2) the equilibrium constant for the reduction exhibits a maximum, which means that the reduction is thermodynamically most favoured just at this composition.

4.
Angew Chem Int Ed Engl ; 53(28): 7344-8, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24866268

ABSTRACT

Nanoparticles of Bi3 Ir, obtained from a microwave-assisted polyol process, activate molecular oxygen from air at room temperature and reversibly intercalate it as oxide ions. The closely related structures of Bi3 Ir and Bi3 IrOx (x≤2) were investigated by X-ray diffraction, electron microscopy, and quantum-chemical modeling. In the topochemically formed metallic suboxide, the intermetallic building units are fully preserved. Time- and temperature-dependent monitoring of the oxygen uptake in an oxygen-filled chamber shows that the activation energy for oxide diffusion (84 meV) is one order of magnitude smaller than that in any known material. Bi3 IrOx is the first metallic oxide ion conductor and also the first that operates at room temperature.

5.
ACS Nano ; 7(4): 2999-3013, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23514447

ABSTRACT

Herein we report the electrical transport properties of a series of ordered mesoporous ceria-zirconia (CexZr1-xO2, referred to as mp-CZO) thin films with both a cubic structure of (17±2) nm diameter pores and nanocrystalline walls. Samples over the whole range of composition, including bare CeO2 and ZrO2, were fabricated by templating strategies using the large diblock copolymer KLE as the structure-directing agent. Both the nanoscale structure and the chemical composition of the mesoporous materials were analyzed by a combination of scanning and transmission electron microscopy, grazing incidence small-angle X-ray scattering, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. The total conductivity as a function of the film composition, temperature, and oxygen partial pressure was measured using impedance spectroscopy. The mesoporous solid solutions of CeO2-ZrO2 prepared in this work showed a higher stability against thermal ripening than both binary oxides, making them ideal model systems to study both the charge transport properties and the oxygen storage at elevated temperatures. We find that the redox properties of nanocrystalline mp-CZO thin films differ significantly from those of bulk CZO materials reported in the literature and, therefore, propose a defect chemical model of surface regions.


Subject(s)
Cerium/chemistry , Membranes, Artificial , Nanostructures/chemistry , Nanostructures/ultrastructure , Oxygen/chemistry , Oxygen/isolation & purification , Zirconium/chemistry , Crystallization/methods , Electron Transport , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Oxidation-Reduction , Particle Size , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...