Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Integr Environ Assess Manag ; 20(3): 674-698, 2024 May.
Article in English | MEDLINE | ID: mdl-36688277

ABSTRACT

The exposure assessment component of a Wildlife Ecological Risk Assessment aims to estimate the magnitude, frequency, and duration of exposure to a chemical or environmental contaminant, along with characteristics of the exposed population. This can be challenging in wildlife as there is often high uncertainty and error caused by broad-based, interspecific extrapolation and assumptions often because of a lack of data. Both the US Environmental Protection Agency (USEPA) and European Food Safety Authority (EFSA) have broadly directed exposure assessments to include estimates of the quantity (dose or concentration), frequency, and duration of exposure to a contaminant of interest while considering "all relevant factors." This ambiguity in the inclusion or exclusion of specific factors (e.g., individual and species-specific biology, diet, or proportion time in treated or contaminated area) can significantly influence the overall risk characterization. In this review, we identify four discrete categories of complexity that should be considered in an exposure assessment-chemical, environmental, organismal, and ecological. These may require more data, but a degree of inclusion at all stages of the risk assessment is critical to moving beyond screening-level methods that have a high degree of uncertainty and suffer from conservatism and a lack of realism. We demonstrate that there are many existing and emerging scientific tools and cross-cutting solutions for tackling exposure complexity. To foster greater application of these methods in wildlife exposure assessments, we present a new framework for risk assessors to construct an "exposure matrix." Using three case studies, we illustrate how the matrix can better inform, integrate, and more transparently communicate the important elements of complexity and realism in exposure assessments for wildlife. Modernizing wildlife exposure assessments is long overdue and will require improved collaboration, data sharing, application of standardized exposure scenarios, better communication of assumptions and uncertainty, and postregulatory tracking. Integr Environ Assess Manag 2024;20:674-698. © 2023 SETAC.

2.
Environ Pollut ; 336: 122377, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37586682

ABSTRACT

The present study assessed for the first time the magnitude and dietary ecological source of total mercury (THg) exposure in a southern population of white-tailed eagles (Haliaeetus albicilla), an apex predator species shown valuable for environmental biomonitoring. This population depends on the Kopacki rit Nature Park - the most important breeding site. We assessed THg exposure, using nestling body feathers collected between 2014-2019 (n = 72), and potential dietary ecological sources, proxied by prey remains and stable isotope analysis. Results show THg concentrations vary significantly over the years, though not showing any time trend. Prey remains analysis shows nests with aquatic prey remains to exhibit higher THg concentrations (median: 7.57 µg g-1 dw; min - max: 6.00-13.16 µg g-1 dw) compared to those with terrestrial remains (median: 3.94 µg g-1 dw; min - max: 0.28-12.04 µg g-1 dw) or evidencing a mixed diet (median: 7.43 µg g-1 dw; min - max: 3.38-12.04 µg g-1 dw). Nests with a predominant aquatic diet show elevated lower δ13C and higher δ15N values, indicating agreement between both dietary approaches. The model selection reveals a combination of year and δ15N best explain the variability in feather THg concentrations. Complementing these predictors with a dietary descriptor based on prey remains results in a poorer model fit and lowered explanatory power, similar to sexing the nestlings. The observed body feather THg concentrations (median: 6.99 µg g-1 dw; min - max: 0.27 - 17.16 µg g-1 dw) exceeded putative biogeochemical background levels (5.00 µg g-1 dw) in 71% of the nestlings, though, did not seem to exceed a threshold at which detrimental physiological effects are expected (40 µg g-1 dw). Continued monitoring is warranted as the studied population is likely exposed to a larger cocktail of contaminants while resident-protected bird areas.

3.
Bull Environ Contam Toxicol ; 110(6): 100, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37266735

ABSTRACT

Mercury (Hg) and stable carbon and nitrogen isotope ratios were analysed in body feathers from nestlings of white-tailed eagles (Haliaeetus albicilla) (WTE; n = 13) and Northern goshawks (Accipiter gentilis) (NG; n = 8) and in red blood cells (RBC) from NG (n = 11) from Norway. According to linear mixed model, species factor was significant in explaining the Hg concentration in feathers (LMM; p < 0.001, estimate (WTE) = 2.51, 95% CI = 1.26, 3.76), with concentrations higher in WTE (3.01 ± 1.34 µg g-1 dry weight) than in NG (0.51 ± 0.34 µg g-1 dry weight). This difference and the isotopic patterns for each species, likely reflect their diet, as WTE predominantly feed on a marine and higher trophic-chain diet compared to the terrestrial NG. In addition, Hg concentrations in RBCs of NG nestlings were positively correlated with feather Hg concentrations (Rho = 0.77, p = 0.03), supporting the potential usefulness of nestling body feathers to biomonitor and estimate Hg exposure. Hg levels in both species were generally below the commonly applied toxicity threshold of 5 µg g-1 in feathers, although exceeded in two WTE (6.08 and 5.19 µg g-1 dry weight).


Subject(s)
Eagles , Environmental Pollutants , Mercury , Animals , Environmental Monitoring , Environmental Pollutants/analysis , Feathers/chemistry , Mercury/analysis , Norway
4.
Environ Res ; 228: 115923, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37072083

ABSTRACT

Exposure to persistent organic pollutants (POPs), such as organochlorines (OCs) and polybrominated diphenyl ethers (PBDEs), is associated with adverse health effects in wildlife. Many POPs have been banned and consequently their environmental concentrations have declined. To assess both temporal trends of POPs and their detrimental impacts, raptors are extensively used as biomonitors due to their high food web position and high contaminant levels. White-tailed eagles (WTEs; Haliaeetus albicilla) in the Baltic ecosystem represent a sentinel species of environmental pollution, as they have suffered population declines due to reproductive failure caused by severe exposure to dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCB) during the 1960s through 1980s. However, there is a lack of long-term studies that cover a wide range of environmental contaminants and their effects at the individual level. In this study, we used 135 pooled samples of shed body feathers collected in 1968-2012 from breeding WTE pairs in Sweden. Feathers constitute a temporal archive for substances incorporated into the feather during growth, including corticosterone, which is the primary avian glucocorticoid and a stress-associated hormone. Here, we analysed the WTE feather pools to investigate annual variations in feather corticosterone (fCORT), POPs (OCs and PBDEs), and stable carbon and nitrogen isotopes (SIs; dietary proxies). We examined whether the expected fluctuations in POPs affected fCORT (8-94 pg. mm-1) in the WTE pairs. Despite clear temporal declining trends in POP concentrations (p < 0.01), we found no significant associations between fCORT and POPs or SIs (p > 0.05 in all cases). Our results do not support fCORT as a relevant biomarker of contaminant-mediated effects in WTEs despite studying a highly contaminated population. However, although not detecting a relationship between fCORT, POP contamination and diet, fCORT represents a non-destructive and retrospective assessment of long-term stress physiology in wild raptors otherwise not readily available.


Subject(s)
Eagles , Environmental Pollutants , Hydrocarbons, Chlorinated , Polychlorinated Biphenyls , Animals , Corticosterone/analysis , Feathers , Retrospective Studies , Halogenated Diphenyl Ethers/analysis , Ecosystem , Environmental Monitoring/methods , Polychlorinated Biphenyls/analysis , Environmental Pollutants/analysis , Hydrocarbons, Chlorinated/analysis
5.
Sci Total Environ ; 876: 162710, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36906016

ABSTRACT

As a result of regulatory decisions, atmospheric deposition of most toxic metals and metalloids (MEs) has decreased in Europe over the past few decades. However, little is known about how this reduction translates into exposure at higher trophic levels in the terrestrial environment where temporal trends may be spatially heterogeneous due to local current or legacy sources of emissions (e.g., industry) or long-range transport of elements (e.g., marine transport). The aim of this study was to characterize temporal and spatial trends of exposure to MEs in terrestrial food webs using a predatory bird, the tawny owl Strix aluco, as a biomonitor. Toxic (Al, As, Cd, Hg, Pb) and essential/beneficial (B, Co, Cu, Mn, Se) elemental concentrations were measured in feathers of nest-captured females from 1986 to 2016, extending a previous study published over the time-series 1986-2005 (n = 1051), in a breeding population in Norway. A drastic decline over time was shown for the toxic MEs (-97 % for Pb, -89 % for Cd, -48 % for Al, and -43 % for As) except Hg. The beneficial elements B, Mn, and Se showed oscillations but an overall decline (-86 %, -34 %, and -12 %, respectively) whereas the essentials Co and Cu did not exhibit significant trends. The distance to potential sources of contamination influenced both the spatial patterns of concentrations in owl feathers and their temporal trends. The accumulation of As, Cd, Co, Mn and Pb was overall higher in the vicinity of sites recorded as polluted, and a greater temporal decrease of As, B, and Cd concentrations was found in the areas of further distance to polluted sites. The decrease of Pb concentrations was sharper further from the coast during the 1980s than in coastal areas, while the opposite was observed for Mn. The levels of Hg and Se were higher in coastal areas, and Hg temporal trends differed according to the distance to the coast. This study highlights the valuable insights provided by long-term survey of wildlife exposure to pollutants and landscape indicators to reveal regional or local patterns and detect unexpected events, data that are crucial for regulation and conservation of ecosystem health.


Subject(s)
Mercury , Metalloids , Metals, Heavy , Strigiformes , Animals , Female , Environmental Monitoring , Cadmium , Ecosystem , Lead , Metals, Heavy/analysis
6.
Mol Ecol ; 32(8): 1925-1942, 2023 04.
Article in English | MEDLINE | ID: mdl-36680370

ABSTRACT

Divergence in the face of high dispersal capabilities is a documented but poorly understood phenomenon. The white-tailed eagle (Haliaeetus albicilla) has a large geographic dispersal capability and should theoretically be able to maintain genetic homogeneity across its dispersal range. However, following analysis of the genomic variation of white-tailed eagles, from both historical and contemporary samples, clear signatures of ancient biogeographic substructure across Europe and the North-East Atlantic is observed. The greatest genomic differentiation was observed between island (Greenland and Iceland) and mainland (Denmark, Norway and Estonia) populations. The two island populations share a common ancestry from a single mainland population, distinct from the other sampled mainland populations, and despite the potential for high connectivity between Iceland and Greenland they are well separated from each other and are characterized by inbreeding and little variation. Temporal differences also highlight a pattern of regional populations persisting despite the potential for admixture. All sampled populations generally showed a decline in effective population size over time, which may have been shaped by four historical events: (1) Isolation of refugia during the last glacial period 110-115,000 years ago, (2) population divergence following the colonization of the deglaciated areas ~10,000 years ago, (3) human population expansion, which led to the settlement in Iceland ~1100 years ago, and (4) human persecution and exposure to toxic pollutants during the last two centuries.


Subject(s)
Eagles , Environmental Pollutants , Animals , Humans , Eagles/genetics , Europe , Norway , Genomics , Genetic Variation/genetics
7.
Environ Sci Technol ; 56(16): 11440-11448, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35921287

ABSTRACT

We investigated trophic dynamics of Hg in the polluted Baltic Archipelago Sea using established trophic magnification (TMFs) and biomagnification factors (BMFs) on a comprehensive set of bird, fish, and invertebrate species. As different ecological and ecophysiological species traits may affect trophic dynamics, we explored the effect of food chain (benthic, pelagic, benthopelagic) and thermoregulatory strategy on trophic total Hg (THg) dynamics, using different approaches to accommodate benthopelagic species and normalize for trophic position (TP). We observed TMFs and most BMFs greater than 1, indicating overall THg biomagnification. We found significantly higher pelagic TMFs (3.58-4.02) compared to benthic ones (2.11-2.34) when the homeotherm bird species were excluded from models, but not when included. This difference between the benthic and pelagic TMFs remained regardless of how the TP of benthopelagic species was modeled, or whether TMFs were normalized for TP or not. TP-corrected BMFs showed a larger range (0.44-508) compared to BMFs representing predator-prey concentration ratios (0.05-82.2). Overall, the present study shows the importance of including and evaluating the effect of ecological and ecophysiological traits when investigating trophic contaminant dynamics.


Subject(s)
Mercury , Water Pollutants, Chemical , Animals , Birds , Environmental Monitoring , Fishes , Food Chain , Mercury/analysis , Water Pollutants, Chemical/analysis
8.
Sci Total Environ ; 850: 157667, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35907551

ABSTRACT

To assess how climate-sensitive factors may affect the exposure to organochlorines (OCs) and perfluoroalkyl substances (PFASs), we monitored concentrations in eggs of the common goldeneye (Bucephala clangula) over two decades (1999-2019) in central Norway. The goldeneye alternates between marine and freshwater habitats and is sensitive to climate variation, especially due to alterations in ice conditions which may affect feeding conditions. We assessed how biological factors such as diet (stable isotopes δ13C and δ15N), the onset of egg laying, and physical characteristics such as winter climate (North Atlantic Oscillation: NAOw) influenced exposure. We predicted compounds to show different temporal trends depending on whether they were still in production (i.e. some PFASs) or have been banned (i.e. legacy OCs and some PFASs). Therefore, we controlled for potential temporal trends in all analyses. There were declining trends for α- and γ-hexachlorocyclohexane (HCH), oxychlordane, cis-chlordane, cis-nonachlor, p,p'-dichlorodiphenyltrichloroethane (p.p'-DDT) and less persistent polychlorinated biphenyl (PCB) congeners (e.g. PCB101). In contrast, the dominant compounds, such as p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and persistent PCB congeners, were stable, whereas hexachlorobenzene (HCB) increased over time. Most OCs were positively related to δ15N, suggesting higher exposure in birds feeding at upper trophic levels. Chlordanes and HCB were positively associated with δ13C, indicating traces of marine input for these compounds, whereas the relationships to most PCBs were negative. Among PFASs, perfluorooctanesulfonamide (PFOSA) and perfluorohexane sulfonic acid (PFHxS) declined. Most PFASs were positively associated with δ13C, whereas there were no associations with δ15N. Egg laying date was positively associated to perfluoroheptanesulfonic acid (PFHpS), perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), suggesting that some of the PFAS load originated from the wintering locations. Although NAOw had little impact on the exposure to organohalogenated contaminants, factors sensitive to climate change, especially diet, were associated with the exposure to OHCs in goldeneyes.


Subject(s)
Environmental Pollutants , Fluorocarbons , Hydrocarbons, Chlorinated , Polychlorinated Biphenyls , Animals , Biological Factors , Birds , Chlordan , DDT , Dichlorodiphenyl Dichloroethylene , Ecosystem , Environmental Monitoring , Environmental Pollutants/analysis , Fresh Water , Hexachlorobenzene , Hexachlorocyclohexane , Hydrocarbons, Chlorinated/analysis , Ice , Polychlorinated Biphenyls/analysis
9.
Sci Total Environ ; 844: 156944, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35752241

ABSTRACT

Since the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects of mercury (Hg) on Arctic biota in 2011 and 2018, there has been a considerable number of new Arctic bird studies. This review article provides contemporary Hg exposure and potential health risk for 36 Arctic seabird and shorebird species, representing a larger portion of the Arctic than during previous AMAP assessments now also including parts of the Russian Arctic. To assess risk to birds, we used Hg toxicity benchmarks established for blood and converted to egg, liver, and feather tissues. Several Arctic seabird populations showed Hg concentrations that exceeded toxicity benchmarks, with 50 % of individual birds exceeding the "no adverse health effect" level. In particular, 5 % of all studied birds were considered to be at moderate or higher risk to Hg toxicity. However, most seabirds (95 %) were generally at lower risk to Hg toxicity. The highest Hg contamination was observed in seabirds breeding in the western Atlantic and Pacific Oceans. Most Arctic shorebirds exhibited low Hg concentrations, with approximately 45 % of individuals categorized at no risk, 2.5 % at high risk category, and no individual at severe risk. Although the majority Arctic-breeding seabirds and shorebirds appeared at lower risk to Hg toxicity, recent studies have reported deleterious effects of Hg on some pituitary hormones, genotoxicity, and reproductive performance. Adult survival appeared unaffected by Hg exposure, although long-term banding studies incorporating Hg are still limited. Although Hg contamination across the Arctic is considered low for most bird species, Hg in combination with other stressors, including other contaminants, diseases, parasites, and climate change, may still cause adverse effects. Future investigations on the global impact of Hg on Arctic birds should be conducted within a multi-stressor framework. This information helps to address Article 22 (Effectiveness Evaluation) of the Minamata Convention on Mercury as a global pollutant.


Subject(s)
Mercury , Animals , Arctic Regions , Birds , Environmental Monitoring , Feathers/chemistry , Humans , Mercury/analysis
10.
Environ Res ; 212(Pt D): 113455, 2022 09.
Article in English | MEDLINE | ID: mdl-35580663

ABSTRACT

Insight into processes determining the exposure of organohalogenated contaminants (OHCs) in wildlife might be gained from comparing predators in different ecosystems. This study compared two avian predator species with similar food chain lengths: the goldeneye duck (Bucephala clangula) and the tawny owl (Strix aluco) breeding in adjacent freshwater- and terrestrial ecosystems in central Norway. We measured lipophilic organochlorines (OCs) and protein-bound perfluorinated substances (PFASs) in eggs of the two species over 21 years (1999-2019). Across years, the proportional distribution of OCs (∼90% of the ΣOHC load) relative to PFASs (∼10%) was similar in the two species. Moreover, ΣOC concentrations were similar between the species, but PFAS compounds were 2-12 times higher in the goldeneyes than in tawny owls. OC-pesticides dominated in tawny owls (∼60% of ΣOC), whereas persistent polychlorinated biphenyl (PCBs) congeners were the main OC components in goldeneyes (∼70% of ΣOC). The lipid-normalized concentrations of most OC-pesticides and the less persistent PCB101 declined significantly in both species. Hexachlorobenzene (HCB), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), and more persistent PCBs decreased in tawny owls, while they tended to increase in goldeneyes. The increase in HCB was particulary robust. Among the PFASs, contrasted temporal trends were found across the species for four out of 11 compounds: PFOS declined while most perfluorocarboxylic acids (PFCAs) increased in tawny owls. In contrast, most PFASs were stable in goldeneyes. Moreover, there was no annual covariance between the OHC exposure in the two species: i.e., high concentrations in one species in a given year did not translate into high concentrations in the other. Hence, the two avian predators in adjacent ecosystems seem to be subject to different processes determining the OHC exposure, probably related to variation in diet and climate, long-range transport of different contaminants, and emissions of pollution locally.


Subject(s)
Environmental Pollutants , Fluorocarbons , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Strigiformes , Animals , Dichlorodiphenyl Dichloroethylene , Ecosystem , Environmental Pollutants/analysis , Fresh Water , Hexachlorobenzene , Hydrocarbons, Chlorinated/analysis , Polychlorinated Biphenyls/analysis
11.
Sci Total Environ ; 838(Pt 2): 156171, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35613645

ABSTRACT

Mercury has become a ubiquitous hazardous element even ending up in pristine areas such as the Arctic, where it biomagnifies and leaves especially top predators vulnerable to potential health effects. Here we investigate total mercury (THg) concentrations and dietary proxies for trophic position and habitat foraging (δ15N and δ13C, respectively) in fur of 30 Arctic wolves collected during 1869-1998 in the Canadian High Arctic and Greenland. Fur THg concentrations (mean ± SD) of 1.46 ± 1.39 µg g -1 dry weight are within the range of earlier reported values for other Arctic terrestrial species. Based on putative thresholds for Hg-mediated toxic health effects, the studied Arctic wolves have most likely not been at compromised health. Dietary proxies show high dietary plasticity among Arctic wolves deriving nutrition from both marine and terrestrial food sources at various trophic positions. Variability in THg concentrations seem to be related to the wolves' trophic position rather than to different carbon sources or regional differences (East Greenland, the Foxe Basin and Baffin Bay area, respectively). Although the present study remains limited due to the scarce, yet unique historic study material and small sample size, it provides novel information on temporal and spatial variation in Hg pollution of remote Arctic species.


Subject(s)
Mercury , Water Pollutants, Chemical , Wolves , Animals , Arctic Regions , Canada , Environmental Monitoring , Food Chain , Greenland , Mercury/analysis , Water Pollutants, Chemical/analysis
12.
Environ Toxicol Chem ; 41(6): 1508-1519, 2022 06.
Article in English | MEDLINE | ID: mdl-35312196

ABSTRACT

Fourteen legacy organochlorine (OC) contaminants and 12 perfluoroalkyl substances (PFASs) were measured in eggs of tawny owls (Strix alueco) in central Norway (1986-2019). We expected OCs to have reached stable equilibrium levels due to bans, and that recent phase-out of some PFASs would have slowed the increase of these compounds. ∑OC comprised on average approximately 92% of the measured compounds, whereas ∑PFAS accounted for approximately 8%. However, whereas the ∑OC to ∑PFAS ratio was approximately 60 in the first 5 years of the study, it was only approximately 11 in the last 5 years. Both OC pesticides and polychlorinated biphenyls (PCBs) showed substantial declines over the study period (~85%-98%): hexachlorocyclohexanes and chlordanes seemed to be levelling off, whereas p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and hexachlororbenzene (HCB), and most PCB congeners still seemed to decline at a more or less constant rate. While the concentration of perfluorooctane sulfonic acid (PFOS), the dominating PFAS, was reduced by approximately 43%, other perfluorinated sulfonates (PFSAs) showed only minor changes. Moreover, the median concentrations of seven perfluorinated carboxylic acids (PFCAs) increased approximately five-fold over the study period. Perfluorononanoic acid and perfluoroundecanoate acid, however, seemed to be levelling off in recent years. In contrast, perfluorododecanoic acid, perfluorodecanoate acid, perfluorotridecanoic acid, and perfluorotetradecanoic acid seemed to increase more or less linearily. Finally, perfluorooctanoic acid (PFOA) was increasingly likely to be detected over the study period. Hence, most legacy OCs and PFOS have not reached a lower threshold with stable background levels, and voluntary elimination of perfluoroalkyl carboxylates still has not resulted in declining levels in tawny owls in central Norway. Environ Toxicol Chem 2022;41:1508-1519. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Environmental Pollutants , Fluorocarbons , Hydrocarbons, Chlorinated , Polychlorinated Biphenyls , Raptors , Strigiformes , Animals , Carboxylic Acids , Environmental Monitoring , Environmental Pollutants/analysis , Fluorocarbons/analysis , Hydrocarbons, Chlorinated/analysis
13.
Sci Total Environ ; 828: 154064, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35240173

ABSTRACT

In this study, we evaluated the suitability of body feathers, preen oil and plasma for estimation of organohalogen compound (OHC) exposure in northern goshawk Accipiter gentilis nestlings (n = 37; 14 nests). In addition, body feathers received further examination concerning their potential to provide an integrated assessment of (1) OHC exposure, (2) its dietary sources (carbon sources and trophic position) and (3) adrenal gland response (corticosterone). While tetrabromobisphenol A was not detected in any sample, the presence of polychlorinated biphenyls, organochlorine pesticides, polybrominated diphenyl ethers and hexabromocyclododecane in body feathers (median: 23, 19, 1.6 and 3.5 ng g-1 respectively), plasma (median: 7.5, 6.2, 0.50 and 1.0 ng g-1 ww, respectively) and preen oil (median: 750, 600, 18 and 9.57 ng g-1 ww, respectively) suggests analytical suitability for biomonitoring of major OHCs in the three matrices. Furthermore, strong and significant associations (0.20 ≤ R2 ≤ 0.98; all P < 0.05) among the OHC concentrations in all three tissues showed that body feathers and preen oil reliably reflect circulating plasma OHC levels. Of the dietary proxies, δ13C (carbon source) was the most suitable predictor for variation in feather OHCs concentrations, while no significant relationships between body feather OHCs and δ15N (trophic position) were found. Finally, body feather corticosterone concentrations were not related to variation in OHC concentrations. This is the first study to evaluate feathers of a terrestrial bird of prey as an integrated non-destructive tool to jointly assess nestling ecophysiology and ecotoxicology.


Subject(s)
Eagles , Environmental Pollutants , Hawks , Animals , Carbon , Corticosterone , Environmental Monitoring , Environmental Pollutants/analysis , Feathers/chemistry
14.
Sci Total Environ ; 829: 154445, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35304145

ABSTRACT

There has been a considerable number of reports on Hg concentrations in Arctic mammals since the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects of the exposure to mercury (Hg) in Arctic biota in 2010 and 2018. Here, we provide an update on the state of the knowledge of health risk associated with Hg concentrations in Arctic marine and terrestrial mammal species. Using available population-specific data post-2000, our ultimate goal is to provide an updated evidence-based estimate of the risk for adverse health effects from Hg exposure in Arctic mammal species at the individual and population level. Tissue residues of Hg in 13 species across the Arctic were classified into five risk categories (from No risk to Severe risk) based on critical tissue concentrations derived from experimental studies on harp seals and mink. Exposure to Hg lead to low or no risk for health effects in most populations of marine and terrestrial mammals, however, subpopulations of polar bears, pilot whales, narwhals, beluga and hooded seals are highly exposed in geographic hotspots raising concern for Hg-induced toxicological effects. About 6% of a total of 3500 individuals, across different marine mammal species, age groups and regions, are at high or severe risk of health effects from Hg exposure. The corresponding figure for the 12 terrestrial species, regions and age groups was as low as 0.3% of a total of 731 individuals analyzed for their Hg loads. Temporal analyses indicated that the proportion of polar bears at low or moderate risk has increased in East/West Greenland and Western Hudson Bay, respectively. However, there remain numerous knowledge gaps to improve risk assessments of Hg exposure in Arctic mammalian species, including the establishment of improved concentration thresholds and upscaling to the assessment of population-level effects.


Subject(s)
Caniformia , Mercury , Seals, Earless , Ursidae , Animals , Arctic Regions , Environmental Monitoring , Mammals , Mercury/toxicity , Risk Assessment
15.
Sci Total Environ ; 822: 153572, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35121036

ABSTRACT

We examined spatial variation in total mercury (THg) concentrations in 100 hair samples collected between 2008 and 2016 from 87 polar bears (Ursus maritimus) from the Norwegian (Svalbard Archipelago, western Barents Sea) and Russian Arctic (Kara Sea, Laptev Sea, and Chukchi Sea). We used latitude and longitude of home range centroid for the Norwegian bears and capture position for the Russian bears to account for the locality. We additionally examined hair stable isotope values of carbon (δ13C) and nitrogen (δ15N) to investigate feeding habits and their possible effect on THg concentrations. Median THg levels in polar bears from the Norwegian Arctic (1.99 µg g-1 dry weight) and the three Russian Arctic regions (1.33-1.75 µg g-1 dry weight) constituted about 25-50% of levels typically reported for the Greenlandic or North American populations. Total Hg concentrations in the Norwegian bears increased with intake of marine and higher trophic prey, while δ13C and δ15N did not explain variation in THg concentrations in the Russian bears. Total Hg levels were higher in northwest compared to southeast Svalbard. δ13C and δ15N values did not show any spatial pattern in the Norwegian Arctic. Total Hg concentrations adjusted for feeding ecology showed similar spatial trends as the measured concentrations. In contrast, within the Russian Arctic, THg levels were rather uniformly distributed, whereas δ13C values increased towards the east and south. The results indicate that Hg exposure in Norwegian and Russian polar bears is at the lower end of the pan-Arctic spectrum, and its spatial variation in the Norwegian and Russian Arctic is not driven by the feeding ecology of polar bears.


Subject(s)
Mercury , Ursidae , Animals , Arctic Regions , Hair/chemistry , Mercury/analysis , Norway
16.
Environ Res ; 208: 112712, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35016866

ABSTRACT

Telomeres are used as biomarkers of vertebrate health because of the link between their length, lifespan, and survival. Exposure to environmental stressors appears to alter telomere dynamics, but little is known about telomere length and persistent organic pollutant (POP) exposure in wildlife. The white-tailed eagle (WTE; Haliaeetus albicilla) is an avian top predator that accumulates high levels of POPs and may subsequently suffer adverse health effects. Here we study the Baltic WTE population that is well documented to have been exposed to large contaminant burdens, thereby making it a promising candidate species for analyzing pollutant-mediated effects on telomeres. We investigated telomere lengths in WTE nestlings (n = 168) over 19 years and examined legacy POP concentrations (organochlorines and polybrominated diphenyl ethers) in whole blood and serum as potential drivers of differences in telomere length. Although we detected significant year-to-year variations in telomere lengths among the WTE nestlings, telomere lengths did not correlate with any of the investigated POP concentrations of several classes. Given that telomere lengths did not associate with POP contamination in the Baltic WTE nestlings, we propose that other environmental and biological factors, which likely fluctuate on a year-to-year basis, could be more important drivers of telomere lengths in this population.


Subject(s)
Eagles , Environmental Pollutants , Animals , Environmental Monitoring , Persistent Organic Pollutants , Sweden , Telomere
17.
Environ Pollut ; 292(Pt A): 118358, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34653585

ABSTRACT

Migratory bird species may serve as vectors of contaminants to Antarctica through the local deposition of guano, egg abandonment, or mortality. To further investigate this chemical input pathway, we examined the contaminant burdens and profiles of the migratory South polar skua (Catharacta maccormicki) and compared them to the endemic Adélie penguin (Pygoscelis adeliae). A range of persistent organic pollutants were targeted in muscle and guano to facilitate differentiation of likely exposure pathways. A total of 56 of 65 targeted analytes were detected in both species, but there were clear profile and magnitude differences between the species. The South polar skua and Adélie penguin muscle tissue burdens were dominated by p,p'-dichlorodiphenyldichloroethylene (mean 5600 ng g-1 lw and 330 ng g-1 lw respectively) and hexachlorobenzene (mean 2500 ng g-1 lw and 570 ng g-1 lw respectively), a chemical profile characteristic of the Antarctic and Southern Ocean region. Species profile differences, indicative of exposure at different latitudes, were observed for polychlorinated biphenyls (PCBs), with lower chlorinated congeners and deca-chlorinated PCB-209 detected in South polar Skua, but not in Adélie penguins. Notably, the more recently used perfluoroalkyl substances and the brominated flame retardants, hexabromocyclododecane and tetrabromobisphenol A, were detected in both species. This finding suggests local exposure, given the predicted slow and limited long-range environmental transport capacity of these compounds to the eastern Antarctic sector.


Subject(s)
Charadriiformes , Environmental Pollutants , Polychlorinated Biphenyls , Spheniscidae , Animals , Antarctic Regions , Environmental Monitoring , Environmental Pollutants/analysis , Persistent Organic Pollutants , Polychlorinated Biphenyls/analysis
18.
Environ Res ; 204(Pt D): 112372, 2022 03.
Article in English | MEDLINE | ID: mdl-34774833

ABSTRACT

The occurrence of organohalogenated compounds (OHCs) in wildlife has received considerable attention over the last decades. Among the matrices used for OHCs biomonitoring, feathers are particularly useful as they can be collected in a minimally or non-invasive manner. In this study, concentrations of various legacy OHCs -polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs)-, as well as emerging OHCs -per- and polyfluoroalkyl substances (PFAS) and organophosphate ester flame retardants (OPEs)- were determined in feathers of 72 Eurasian eagle-owls (Bubo bubo) from Norway, with the goal of studying spatiotemporal variation using a non-invasive approach. Molted feathers were collected at nest sites from northern, central and southern Norway across four summers (2013-2016). Additionally, two museum-archived feathers from 1979 to 1989 were included. Stable carbon (δ13C) and nitrogen isotopes (δ15N) were used as dietary proxies. In total, 11 PFAS (sum range 8.25-215.90 ng g-1), 15 PCBs (4.19-430.01 ng g-1), 6 OCPs (1.48-220.94 ng g-1), 5 PBDEs (0.21-5.32 ng g-1) and 3 OPEs (4.49-222.21 ng g-1) were quantified. While we observed large variation in the values of both stable isotopes, suggesting a diverse diet of the eagle-owls, only δ13C seemed to explain variation in PFAS concentrations. Geographic area and year were influential factors for δ15N and δ13C. Considerable spatial variation was observed in PFAS levels, with the southern area showing higher levels compared to northern and central Norway. For the rest of OHCs, we observed between-year variations; sum concentrations of PCBs, OCPs, PBDEs and OPEs reached a maximum in 2015 and 2016. Concentrations from 1979 to 1989 were within the ranges observed between 2013 and 2016. Overall, our data indicate high levels of legacy and emerging OHCs in a top predator in Norway, further highlighting the risk posed by OHCs to wildlife.


Subject(s)
Environmental Pollutants , Polychlorinated Biphenyls , Strigiformes , Animals , Diet , Environmental Monitoring , Environmental Pollutants/analysis , Feathers/chemistry , Halogenated Diphenyl Ethers/analysis , Polychlorinated Biphenyls/analysis
19.
Environ Pollut ; 290: 117952, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34425374

ABSTRACT

Human-induced mercury (Hg) contamination is of global concern and its effects on wildlife remain of high concern, especially in environmental hotspots such as inland aquatic ecosystems. Mercury biomagnifies through the food web resulting in high exposure in apex predators, such as the white-tailed eagle (Haliaeetus albicilla), making them excellent sentinel species for environmental Hg contamination. An expanding population of white-tailed eagles is inhabiting a sparsely populated inland area in Lapland, northern Finland, mainly around two large reservoirs flooded 50 years ago. As previous preliminary work revealed elevated Hg levels in this population, we measured Hg exposure along with dietary proxies (δ13C and δ15N) in body feathers collected from white-tailed eagle nestlings in this area between 2007 and 2018. Mercury concentrations were investigated in relation to territory characteristics, proximity to the reservoirs and dietary ecology as potential driving factors of Hg contamination. Mercury concentrations in the nestlings (4.97-31.02 µg g-1 dw) were elevated, compared to earlier reported values in nestlings from the Finnish Baltic coast, and exceeded normal background levels (≤5.00 µg g-1) while remaining below the tentative threshold of elevated risk for Hg exposure mediated health effect (>40.00 µg g-1). The main drivers of Hg contamination were trophic position (proxied by δ15N), the dietary proportion of the predatory fish pike (Esox lucius), and the vicinity to the Porttipahta reservoir. We also identified a potential evolutionary trap, as increased intake of the preferred prey, pike, increases exposure. All in all, we present results for poorly understood freshwater lake environments and show that more efforts should be dedicated to further unravel potentially complex pathways of Hg exposure to wildlife.


Subject(s)
Eagles , Environmental Pollutants , Mercury , Animals , Ecosystem , Environmental Monitoring , Environmental Pollutants/analysis , Fresh Water , Humans , Mercury/analysis
20.
Ambio ; 50(1): 95-100, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32399779

ABSTRACT

Birds of prey, owls and falcons are widely used as sentinel species in raptor biomonitoring programmes. A major current challenge is to facilitate large-scale biomonitoring by coordinating contaminant monitoring activities and by building capacity across countries. This requires sharing, dissemination and adoption of best practices addressed by the Networking Programme Research and Monitoring for and with Raptors in Europe (EURAPMON) and now being advanced by the ongoing international COST Action European Raptor Biomonitoring Facility. The present perspective introduces a schematic sampling protocol for contaminant monitoring in raptors. We provide guidance on sample collection with a view to increasing sampling capacity across countries, ensuring appropriate quality of samples and facilitating harmonization of procedures to maximize the reliability, comparability and interoperability of data. The here presented protocol can be used by professionals and volunteers as a standard guide to ensure harmonised sampling methods for contaminant monitoring in raptors.


Subject(s)
Raptors , Animals , Birds , Environmental Monitoring , Europe , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...