Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 390(4): 435-441, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28220210

ABSTRACT

The correlation of in vitro inhibition of cathepsin K (CatK) activity and in vivo suppression of collagen I biomarkers was examined with three selective CatK inhibitors to explore the potential translatability from animal species to human. These inhibitors exhibited good in vitro potencies toward recombinant CatK enzymes across species, with IC50 values ranging from 0.20 to 6.1 nM. In vivo studies were conducted in animal species following multiple-day dosing of the CatK inhibitors to achieve steady-state plasma drug concentration-time profiles. Measurement of urinary bone resorption biomarkers (cross-linked N-terminal telopeptide and helical peptide of type I collagen) revealed drug concentration-dependent suppression of biomarkers, with EC50 values estimated to be 12 to 160 nM. Marked improvement in the correlation between in vitro and in vivo CatK activities was observed with the application of unbound (free) fraction in plasma, consistent with the conditions stipulated by the free-drug hypothesis. These results indicate that the in vitro-in vivo translation of CatK inhibition observed in animal species can translate to humans when the unbound fraction of the inhibitor is considered. Interestingly, residual levels of urinary bone resorption marker were detected as the suppression reached saturation (at an average of 82% inhibition), an apparent phenomenon observed regardless of the species, biomarker, or compound examined. Since cathepsin enzymes other than CatK were reported to catalyze cleavage of collagen I, it is hypothesized that CatK-mediated degradation of collagen I in bone represents ~82% of overall collagen I turnover in the body.


Subject(s)
Cathepsin K/blood , Cysteine Proteinase Inhibitors/blood , Adolescent , Adult , Aged , Animals , Biomarkers/urine , Biphenyl Compounds/blood , Biphenyl Compounds/pharmacokinetics , Biphenyl Compounds/pharmacology , Biphenyl Compounds/urine , Blood Proteins/metabolism , Cathepsin K/antagonists & inhibitors , Collagen Type I/urine , Cysteine Proteinase Inhibitors/pharmacokinetics , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/urine , Dogs , Female , Humans , Macaca mulatta , Male , Middle Aged , Peptides/urine , Protein Binding , Pyrazoles/blood , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyrazoles/urine , Rabbits , Sulfones/blood , Sulfones/pharmacokinetics , Sulfones/pharmacology , Sulfones/urine , Young Adult
2.
J Am Chem Soc ; 137(35): 11230-3, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26301491

ABSTRACT

During drug discovery, assessment of in vivo target occupancy by therapeutic candidates is often required for predicting clinical efficacy. Current strategies for determining target occupancy include using radiolabeled or irreversible surrogates, which can be technically challenging, and the results are often not sufficiently quantitative. We developed a straightforward method by applying slow-dissociation kinetics to quantitatively determine enzyme occupancy without using specialized reagents. We applied this method to determine occupancy of Cathepsin K inhibitors in bone tissues harvested from rabbit femurs. Tissues from dosed animals were harvested, flash frozen, lysed, then analyzed by a jump-dilution assay with substrate. The rate of substrate turnover was monitored continuously until reaching steady state and progress curves were fit with the equation [product] = vst + ((vi - vs)/kobs)(1 - exp(-kobst)). The initial rate vi represents the residual activity of the enzyme before inhibitor dissociation; vs is the reaction rate after dissociation of the inhibitor. Occupancy is derived from the ratio of vi/vs. A significant benefit of the method is that data from both the occupied and unoccupied states are obtained in the same assay under identical conditions, which provides greater consistency between studies. The Cat K inhibitor MK-0674 (in vitro IC50 1 nM) was tested in young rabbits (<6 month old) and showed a dose-dependent increase in occupancy, reaching essentially complete occupancy at 1.0 mg/kg. In addition the method enables measurement of the total Cat K in the target tissue. Results confirmed complete occupancy even as the osteoclasts responded to higher doses with increased enzyme production.


Subject(s)
Cathepsin K/antagonists & inhibitors , Cathepsin K/metabolism , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Animals , Bone and Bones/enzymology , Drug Evaluation, Preclinical , Kinetics , Rabbits
3.
Bioorg Med Chem ; 19(24): 7374-86, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22079253

ABSTRACT

A series of partial agonists of the Glucocorticoid Receptor were prepared targeting reduced transactivation activity, while maintaining significant transrepression activity. Incorporation of an ortho-aryl amide produced compounds with the desired in vitro profile. Bioreactors consisting of Suspension cultures of Sf21 cells co expressing a CYP3A4 and NADPH-cytochrome P450 oxireductase were used to prepare the major metabolites of these compounds and revealed that oxidative N-dealkylation provided a pathway for formation of metabolites that were more agonistic than the parent partial agonists. Oxidative N-dealkylation was blocked in a new series of compounds, however oxidation alone was capable of producing full agonist metabolites. Incorporation of an ortho-primary amide and utilization of fluorine to modulate agonism afforded partial agonist MK-5932. Synthesis of the major metabolites of MK-5932 using bioreactor technology revealed that no significant GR-active metabolites were formed. Orally administered MK-5932 displayed anti-inflammatory efficacy in a Rat Oxazolone-induced chronic dermatitis model, while sparing plasma insulin.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Bioreactors , Receptors, Glucocorticoid/agonists , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Cell Line , Cytochrome P-450 CYP3A/metabolism , Dealkylation , Dermatitis/drug therapy , Female , Glucocorticoids/metabolism , Humans , Insecta , NADPH-Ferrihemoprotein Reductase/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Glucocorticoid/metabolism
4.
Chem Commun (Camb) ; (4): 419-21, 2007 Jan 28.
Article in English | MEDLINE | ID: mdl-17220990

ABSTRACT

We report the first case of a pharmaceutical cocrystal formed between an inorganic acid and an active pharmaceutical ingredient (API), which enabled us to develop a stable crystalline and bioavailable solid dosage form for pharmaceutical development where otherwise only unstable amorphous free form or salts could have been used.


Subject(s)
Phosphates/chemistry , Phosphoric Acids/chemistry , Crystallization , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Phosphates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...