Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 411, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195625

ABSTRACT

Besides vaccines, the development of antiviral drugs targeting SARS-CoV-2 is critical for preventing future COVID outbreaks. The SARS-CoV-2 main protease (Mpro), a cysteine protease with essential functions in viral replication, has been validated as an effective drug target. Here, we show that Mpro is subject to redox regulation in vitro and reversibly switches between the enzymatically active dimer and the functionally dormant monomer through redox modifications of cysteine residues. These include a disulfide-dithiol switch between the catalytic cysteine C145 and cysteine C117, and generation of an allosteric cysteine-lysine-cysteine SONOS bridge that is required for structural stability under oxidative stress conditions, such as those exerted by the innate immune system. We identify homo- and heterobifunctional reagents that mimic the redox switching and inhibit Mpro activity. The discovered redox switches are conserved in main proteases from other coronaviruses, e.g. MERS-CoV and SARS-CoV, indicating their potential as common druggable sites.


Subject(s)
COVID-19 , Cysteine , Humans , SARS-CoV-2 , Drug Design , Oxidation-Reduction
2.
Nucleic Acids Res ; 43(20): 9994-10014, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26384431

ABSTRACT

Eukaryal translation initiation factor 2B (eIF2B) acts as guanine nucleotide exchange factor (GEF) for eIF2 and forms a central target for pathways regulating global protein synthesis. eIF2B consists of five non-identical subunits (α-ϵ), which assemble into a catalytic subcomplex (γ, ϵ) responsible for the GEF activity, and a regulatory subcomplex (α, ß, δ) which regulates the GEF activity under stress conditions. Here, we provide new structural and functional insight into the regulatory subcomplex of eIF2B (eIF2B(RSC)). We report the crystal structures of eIF2Bß and eIF2Bδ from Chaetomium thermophilum as well as the crystal structure of their tetrameric eIF2B(ßδ)2 complex. Combined with mutational and biochemical data, we show that eIF2B(RSC) exists as a hexamer in solution, consisting of two eIF2Bßδ heterodimers and one eIF2Bα2 homodimer, which is homologous to homohexameric ribose 1,5-bisphosphate isomerases. This homology is further substantiated by the finding that eIF2Bα specifically binds AMP and GMP as ligands. Based on our data, we propose a model for eIF2B(RSC) and its interactions with eIF2 that is consistent with previous biochemical and genetic data and provides a framework to better understand eIF2B function, the molecular basis for Gcn(-), Gcd(-) and VWM/CACH mutations and the evolutionary history of the eIF2B complex.


Subject(s)
Eukaryotic Initiation Factor-2B/chemistry , Fungal Proteins/chemistry , Chaetomium , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2B/metabolism , Fungal Proteins/metabolism , Ligands , Models, Molecular , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...