Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 10(3)2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30205497

ABSTRACT

Transdermal drug administration presents several advantages and it is therefore favorable as an alternative drug delivery route. However, transdermal delivery of biopharmaceutical drugs is made difficult by the skin barrier. Microneedle application and iontophoresis are strategies which can be used to overcome this barrier. Therefore, recombinant human growth hormone (rhGH) was used as a model macromolecular drug and was transdermally delivered using microneedle application and iontophoresis. Methylene blue staining, stereomicroscopy and scanning electron microscope (SEM) imaging were used to characterize the microchannels produced. To optimize the iontophoresis protocol, the effects of molecular charge and current density on transdermal delivery were evaluated in an in vitro permeation study using excised rat skin tissues. Using the optimized iontophoresis protocol, the combination effects of iontophoretic delivery via microchannels were evaluated in three different experimental designs. The flux obtained with anodal iontophoresis in citrate buffer was approximately 10-fold higher that that with cathodal iontophoresis in phosphate buffered saline (PBS). Flux also increased with current density in anodal iontophoresis. The combination of iontophoresis and microneedle application produced higher flux than single application. These results suggest that anodal iontophoresis with higher current density enhances the permeation of macromolecules through microchannels created by microneedles. In conclusion, the combination of iontophoresis and microneedles is a potential strategy for the enhancement of transdermal delivery of macromolecular drugs.

2.
Biomed Mater Eng ; 24(6): 3033-41, 2014.
Article in English | MEDLINE | ID: mdl-25227011

ABSTRACT

The portable visible and near-infrared (NIR) imaging equipment for a pre-clinical test with small animals was designed and developed in this paper. The developed equipment is composed of a CCD camera, a focusing lens, an objective lens, a NIR band pass filter and a NIR filter driving motor. An NIR ray is mainly used for imaging equipment because it has high light penetration depth in biological tissue. Therefore, NIR fluorescent agents are available for chemical conjugation to targeting molecules in vivo. This equipment can provide a visible image, NIR image and merged image simultaneously. A communication system was specifically established to check obtained images through a smart pad in real time. It is less dependent on space and time than the conventional system.


Subject(s)
Computers, Handheld , Image Interpretation, Computer-Assisted/methods , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/veterinary , Mobile Applications , Spectroscopy, Near-Infrared/instrumentation , Spectroscopy, Near-Infrared/veterinary , Animals , Computer Graphics , Equipment Design/veterinary , Equipment Failure Analysis , Mice , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted/instrumentation , User-Computer Interface
3.
Biosystems ; 98(1): 51-5, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19486923

ABSTRACT

In this study, we fabricated a novel variable wavelength surface plasmon resonance (SPR) sensor, which detects resonance conditions such as a maximum attenuation wavelength, measuring change of microscopic refractive index. Such a change was measured to detect a salmonella antigen-antibody reaction and a penicillinase-penicillin reaction. Our experiments were performed after immobilizing a salmonella antibody on the sensor chip. We measured the shift in resonant wavelength during the antigen-antibody reaction for 30 min by injecting 5 x 10(7) cells/ml concentration of salmonella antigen solution into the sample chamber. Also, after immobilizing penicillinase on the sensor chip, we measured the shift in resonant wavelength during the reaction. Penicillin solution at 10mM was injected into the sample chamber. The shift of resonant wavelength for each experiment was measured using a white light source, multimode optical fiber, a part of sensor chip and an optical spectrum analyzer. As a result, the resonant wavelength shifted about 0.26 nm/min owing to the salmonella antibody-antigen reaction. Thus, we could detect the change in wavelength (0.8 nm/min) through the interaction of penicillin and penicillinase for 15 min using variable wavelength SPR sensor.


Subject(s)
Biosensing Techniques/instrumentation , Immunoassay/instrumentation , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...