Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37445656

ABSTRACT

It is well known that the cytokine-induced apoptosis inhibitor 1 (CIAPIN1) protein plays an important role in biological progresses as an anti-apoptotic protein. Human islet amyloid peptide (hIAPP), known as amylin, is caused to pancreatic ß-cell death in type 2 diabetes mellitus (T2DM). However, the function of CIAPIN1 protein on T2DM is not yet well studied. Therefore, we investigated the effects of CIAPIN1 protein on a hIAPP-induced RINm5F cell and T2DM animal model induced by a high-fat diet (HFD) and streptozotocin (STZ). The Tat-CIAPIN1 protein reduced the activation of mitogen-activated protein kinase (MAPK) and regulated the apoptosis-related protein expression levels including COX-2, iNOS, Bcl-2, Bax, and Caspase-3 in hIAPP-induced RINm5F cells. In a T2DM mice model, the Tat-CIAPIN1 protein ameliorated the pathological changes of pancreatic ß-cells and reduced the fasting blood glucose, body weight and hemoglobin Alc (HbAlc) levels. In conclusion, the Tat-CIAPIN1 protein showed protective effects against T2DM by protection of ß-cells via inhibition of hIAPP toxicity and by regulation of a MAPK signal pathway, suggesting CIAPIN1 protein can be a therapeutic protein drug candidate by beneficial regulation of T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Mice , Animals , Humans , Diabetes Mellitus, Type 2/metabolism , Islets of Langerhans/metabolism , Insulin-Secreting Cells/metabolism , Islet Amyloid Polypeptide/pharmacology , Islet Amyloid Polypeptide/metabolism , Apoptosis , Amyloid/metabolism , Disease Models, Animal , Gene Products, tat/metabolism , Mitogen-Activated Protein Kinases/metabolism
2.
Heliyon ; 9(5): e15945, 2023 May.
Article in English | MEDLINE | ID: mdl-37223703

ABSTRACT

Background: Oxidative stress is considered as one of the main causes of Parkinson's disease (PD), however the exact etiology of PD is still unknown. Although it is known that Proviral Integration Moloney-2 (PIM2) promotes cell survival by its ability to inhibit formation of reactive oxygen species (ROS) in the brain, the precise functional role of PIM2 in PD has not been fully studied yet. Objective: We investigated the protective effect of PIM2 against apoptosis of dopaminergic neuronal cells caused by oxidative stress-induced ROS damage by using the cell permeable Tat-PIM2 fusion protein in vitro and in vivo. Methods: Transduction of Tat-PIM2 into SH-SY5Y cells and apoptotic signaling pathways were determined by Western blot analysis. Intracellular ROS production and DNA damage was confirmed by DCF-DA and TUNEL staining. Cell viability was determined by MTT assay. PD animal model was induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and protective effects were examined using immunohistochemistry. Results: Transduced Tat-PIM2 inhibited the apoptotic caspase signaling and reduced the production of ROS induced by 1-methyl-4-phenylpyridinium (MPP+) in SH-SY5Y cells. Furthermore, we confirmed that Tat-PIM2 transduced into the substantia nigra (SN) region through the blood-brain barrier and this protein protected the Tyrosine hydroxylase-positive cells by observation of immunohistostaining. Tat-PIM2 also regulated antioxidant biomolecules such as SOD1, catalase, 4-HNE, and 8-OHdG which reduce the formation of ROS in the MPTP-induced PD mouse model. Conclusion: These results indicated that Tat-PIM2 markedly inhibited the loss of dopaminergic neurons by reducing ROS damage, suggesting that Tat-PIM2 might be a suitable therapeutic agent for PD.

3.
Neurochem Int ; 167: 105538, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37207854

ABSTRACT

Oxidative stress plays a key role in the pathogenesis of neuronal injury, including ischemia. Ras-related nuclear protein (RAN), a member of the Ras superfamily, involves in a variety of biological roles, such as cell division, proliferation, and signal transduction. Although RAN reveals antioxidant effect, its precise neuroprotective mechanisms are still unclear. Therefore, we investigated the effects of RAN on HT-22 cell which were exposed to H2O2-induced oxidative stress and ischemia animal model by using the cell permeable Tat-RAN fusion protein. We showed that Tat-RAN transduced into HT-22 cells, and markedly inhibited cell death, DNA fragmentation, and reactive oxygen species (ROS) generation under oxidative stress. This fusion protein also controlled cellular signaling pathways, including mitogen-activated protein kinases (MAPKs), NF-κB, and apoptosis (Caspase-3, p53, Bax and Bcl-2). In the cerebral forebrain ischemia animal model, Tat-RAN significantly inhibited both neuronal cell death, and astrocyte and microglia activation. These results indicate that RAN significantly protects against hippocampal neuronal cell death, suggesting Tat-RAN will help to develop the therapies for neuronal brain diseases including ischemic injury.


Subject(s)
Brain Injuries , Brain Ischemia , Neuroprotective Agents , Animals , Hydrogen Peroxide/pharmacology , ran GTP-Binding Protein/metabolism , ran GTP-Binding Protein/pharmacology , Hippocampus/metabolism , Ischemia/metabolism , Oxidative Stress , Brain Ischemia/metabolism , Apoptosis , Gene Products, tat/genetics , Gene Products, tat/metabolism , Gene Products, tat/pharmacology , Disease Models, Animal , Brain Injuries/metabolism , Neuroprotective Agents/pharmacology
4.
Biomedicines ; 11(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36979816

ABSTRACT

Glutathione S-transferase pi (GSTpi) is a member of the GST family and plays many critical roles in cellular processes, including anti-oxidative and signal transduction. However, the role of anti-oxidant enzyme GSTpi against dopaminergic neuronal cell death has not been fully investigated. In the present study, we investigated the roles of cell permeable Tat-GSTpi fusion protein in a SH-SY5Y cell and a Parkinson's disease (PD) mouse model. In the 1-methyl-4-phenylpyridinium (MPP+)-exposed cells, Tat-GSTpi protein decreased DNA damage and reactive oxygen species (ROS) generation. Furthermore, this fusion protein increased cell viability by regulating MAPKs, Bcl-2, and Bax signaling. In addition, Tat-GSTpi protein delivered into the substantia nigra (SN) of mice brains protected dopaminergic neuronal cell death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD animal model. Our results indicate that the Tat-GSTpi protein inhibited cell death from MPP+- and MPTP-induced damage, suggesting that it plays a protective role during the loss of dopaminergic neurons in PD and that it could help to identify the mechanism responsible for neurodegenerative diseases, including PD.

5.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769090

ABSTRACT

Glutathione S-transferase alpha 2 (GSTA2), a member of the glutathione S-transferase family, plays the role of cellular detoxification against oxidative stress. Although oxidative stress is related to ischemic injury, the role of GSTA2 against ischemia has not been elucidated. Thus, we studied whether GSTA2 prevents ischemic injury by using the PEP-1-GSTA2 protein which has a cell-permeable protein transduction domain. We revealed that cell-permeable PEP-1-GSTA2 transduced into HT-22 cells and markedly protected cell death via the inhibition of reactive oxygen species (ROS) production and DNA damage induced by oxidative stress. Additionally, transduced PEP-1-GSTA2 promoted mitogen-activated protein kinase (MAPK), and nuclear factor-kappaB (NF-κB) activation. Furthermore, PEP-1-GSTA2 regulated Bcl-2, Bax, cleaved Caspase-3 and -9 expression protein levels. An in vivo ischemic animal model, PEP-1-GSTA2, markedly prevented the loss of hippocampal neurons and reduced the activation of microglia and astrocytes. These findings indicate that PEP-1-GSTA2 suppresses hippocampal cell death by regulating the MAPK and apoptotic signaling pathways. Therefore, we suggest that PEP-1-GSTA2 will help to develop the therapies for oxidative-stress-induced ischemic injury.


Subject(s)
Hippocampus , Oxidative Stress , Animals , Apoptosis , Hippocampus/metabolism , Ischemia/metabolism , Neurons/metabolism , Reactive Oxygen Species/metabolism , Glutathione Transferase/metabolism
6.
FEBS J ; 290(11): 2923-2938, 2023 06.
Article in English | MEDLINE | ID: mdl-36688733

ABSTRACT

It is well known that oxidative stress is highly associated with Parkinson's disease (PD), and biliverdin reductase A (BLVRA) is known to have antioxidant properties against oxidative stress. In this study, we developed a novel N-acetylgalactosamine kinase (GK2) protein transduction domain (PTD) derived from adenosine A2A and fused with BLVRA to determine whether the GK2-BLVRA fusion protein could protect dopaminergic neuronal cells (SH-SY5Y) from oxidative stress in vitro and in vivo using a PD animal model. GK2-BLVRA was transduced into various cells, including SH-SY5Y cells, without cytotoxic effects, and this fusion protein protected SH-SY5Y cells and reduced reactive oxygen species production and DNA damage after 1-methyl-4-phenylpyridinium (MPP+ ) exposure. GK2-BLVRA suppressed mitogen-activated protein kinase (MAPK) activation and modulated apoptosis-related protein (Bcl-2, Bax, cleaved Caspase-3 and -9) expression levels. In the PD animal model, GK2-BLVRA transduced into the substantia nigra crossed the blood-brain barrier and markedly reduced dopaminergic neuronal cell death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animals. These results indicate that our novel PTD GK-2 is useful for the transduction of protein, and GK2-BLVRA exhibits a beneficial effect against dopaminergic neuronal cell death in vitro and in vivo, suggesting that BLVRA can be used as a therapeutic agent for PD.


Subject(s)
Neuroblastoma , Neuroprotective Agents , Parkinson Disease , Animals , Humans , Mice , Cell Line, Tumor , Neuroblastoma/drug therapy , Oxidative Stress , Apoptosis , Cell Death , Parkinson Disease/drug therapy , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
7.
BMB Rep ; 56(4): 234-239, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36571143

ABSTRACT

Thioredoxin-like protein 1 (TXNL1), one of the thioredoxin superfamily known as redox-regulator, plays an essential in maintaining cell survival via various antioxidant and anti-apoptotic mechanisms. It is well known that relationship between ischemia and oxidative stress, however, the role of TXNL1 protein in ischemic damage has not been fully investigated. In the present study, we aimed to determine the protective role of TXNL1 against on ischemic injury in vitro and in vivo using cell permeable Tat-TXNL1 fusion protein. Transduced Tat-TXNL1 inhibited ROS production and cell death in H2O2-exposed hippocampal neuronal (HT-22) cells and modulated MAPKs and Akt activation, and pro-apoptotic protein expression levels in the cells. In an ischemia animal model, Tat-TXNL1 markedly decreased hippocampal neuronal cell death and the activation of astrocytes and microglia. These findings indicate that cell permeable Tat-TXNL1 protects against oxidative stress in vitro and in vivo ischemic animal model. Therefore, we suggest Tat-TXNL1 can be a potential therapeutic protein for ischemic injury. [BMB Reports 2023; 56(4): 234-239].


Subject(s)
Brain Injuries , Hydrogen Peroxide , Animals , Hydrogen Peroxide/pharmacology , Cell Line , Apoptosis , Oxidative Stress , Gene Products, tat/metabolism , Ischemia , Thioredoxins/genetics , Thioredoxins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/metabolism
8.
Exp Ther Med ; 22(6): 1395, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34650643

ABSTRACT

Thioredoxin 1 (Trx1) serves a central role in redox homeostasis. It is involved in numerous other processes, including oxidative stress and apoptosis. However, to the best of our knowledge, the role of Trx1 in inflammation remains to be explored. The present study investigated the function and mechanism of cell permeable fused Tat-Trx1 protein in macrophages and a mouse model. Transduction levels of Tat-Trx1 were determined via western blotting. Cellular distribution of transduced Tat-Trx1 was determined by fluorescence microscopy. 2',7'-Dichlorofluorescein diacetate and TUNEL staining were performed to determine the production of reactive oxygen species and DNA fragmentation. Protein and gene expression were measured by western blotting and reverse transcription-quantitative PCR (RT-qPCR), respectively. Effects of skin inflammation were determined using hematoxylin and eosin staining, changes in ear weight and ear thickness, and RT-qPCR in ear edema animal models. Transduced Tat-Trx1 inhibited lipopolysaccharide-induced cytotoxicity and activation of NF-κB, MAPK and Akt. Additionally, Tat-Trx1 markedly reduced the production of inducible nitric oxide synthase, cyclooxygenase-2, IL-1ß, IL-6 and TNF-α in macrophages. In a 12-O-tetradecanoylphorbol-13-acetate-induced mouse model, Tat-Trx1 reduced inflammatory damage by inhibiting inflammatory mediator and cytokine production. Collectively, these results demonstrated that Tat-Trx1 could exert anti-inflammatory effects by inhibiting the production of pro-inflammatory mediators and cytokines and by modulating MAPK signaling. Therefore, Tat-Trx1 may be a useful therapeutic agent for diseases induced by inflammatory damage.

9.
Molecules ; 26(11)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34206041

ABSTRACT

Parkinson's disease (PD) is characterized mainly by the loss of dopaminergic neurons in the substantia nigra (SN) mediated via oxidative stress. Although glutaredoxin-1 (GLRX1) is known as one of the antioxidants involved in cell survival, the effects of GLRX1 on PD are still unclear. In this study, we investigated whether cell-permeable PEP-1-GLRX1 inhibits dopaminergic neuronal cell death induced by 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We showed that PEP-1-GLRX1 protects cell death and DNA damage in MPP+-exposed SH-SY5Y cells via the inhibition of MAPK, Akt, and NF-κB activation and the regulation of apoptosis-related protein expression. Furthermore, we found that PEP-1-GLRX1 was delivered to the SN via the blood-brain barrier (BBB) and reduced the loss of dopaminergic neurons in the MPTP-induced PD model. These results indicate that PEP-1-GLRX1 markedly inhibited the loss of dopaminergic neurons in MPP+- and MPTP-induced cytotoxicity, suggesting that this fusion protein may represent a novel therapeutic agent against PD.


Subject(s)
Cysteamine/analogs & derivatives , Dopaminergic Neurons/cytology , Glutaredoxins/administration & dosage , MAP Kinase Signaling System/drug effects , Parkinson Disease/drug therapy , Peptides/chemistry , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , 1-Methyl-4-phenylpyridinium/adverse effects , Animals , Apoptosis/drug effects , Cell Line , Cysteamine/chemistry , Disease Models, Animal , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Gene Expression Regulation/drug effects , Glutaredoxins/chemistry , Glutaredoxins/pharmacology , Humans , Male , Mice , Parkinson Disease/etiology , Parkinson Disease/metabolism , Substantia Nigra/chemistry
10.
Free Radic Biol Med ; 172: 418-429, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34175438

ABSTRACT

Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and activated mTORC1 plays important roles for cellular survival in response to oxidative stress. However, the roles of PRAS40 in dopaminergic neuronal cell death have not yet been examined. Here, we examined the roles of Tat-PRAS40 in MPP+- and MPTP-induced dopaminergic neuronal cell death. Our results showed that Tat-PRAS40 effectively transduced into SH-SY5Y cells and inhibited DNA damage, ROS generation, and apoptotic signaling in MPP+-induced SH-SY5Y cells. Further, these protective mechanisms of Tat-PRAS40 protein display through phosphorylation of Tat-PRAS40, Akt and direct interaction with 14-3-3σ protein, but not via the mTOR-dependent signaling pathway. In a Parkinson's disease animal model, Tat-PRAS40 transduced into dopaminergic neurons in mouse brain and significantly protected against dopaminergic cell death by phosphorylation of Tat-PRAS40, Akt and interaction with 14-3-3σ protein. In this study, we demonstrated for the first time that Tat-PRAS40 directly protects against dopaminergic neuronal cell death. These results indicate that Tat-PRAS40 may provide a useful therapeutic agent against oxidative stress-induced dopaminergic neuronal cell death, which causes diseases such as PD.


Subject(s)
Dopaminergic Neurons , Oxidative Stress , Animals , Apoptosis , Cell Death , Mice , Reactive Oxygen Species
11.
BMB Rep ; 54(9): 458-463, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34120676

ABSTRACT

Cytokines activate inflammatory signals and are major mediators in progressive ß-cell damage, which leads to type 1 diabetes mellitus. We recently showed that the cell-permeable Tat-CIAPIN1 fusion protein inhibits neuronal cell death induced by oxidative stress. However, how the Tat-CIAPIN1 protein affects cytokine-induced ß-cell damage has not been investigated yet. Thus, we assessed whether the Tat-CIAPIN1 protein can protect RINm5F ß-cells against cytokine-induced cytotoxicity. In cytokine-exposed RINm5F ß-cells, the transduced Tat-CIAPIN1 protein elevated cell survivals and reduced reactive oxygen species (ROS) and DNA fragmentation levels. The Tat-CIAPIN1 protein reduced mitogen-activated protein kinases (MAPKs) and NF-κB activation levels and elevated Bcl-2 protein, whereas Bax and cleaved Caspase-3 proteins were decreased by this fusion protein. Thus, the protection of RINm5F ß-cells by the Tat-CIAPIN1 protein against cytokine-induced cytotoxicity can suggest that the Tat-CIAPIN1 protein might be used as a therapeutic inhibitor against RINm5F ß-cell damage. [BMB Reports 2021; 54(9): 458-463].


Subject(s)
Apoptosis/drug effects , Cytokines/pharmacology , Gene Products, tat/genetics , Intracellular Signaling Peptides and Proteins/genetics , Recombinant Fusion Proteins/metabolism , Caspase 3/metabolism , Cell Line , DNA Fragmentation/drug effects , Gene Products, tat/metabolism , Humans , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism , Recombinant Fusion Proteins/genetics , Signal Transduction/drug effects
12.
Int J Mol Med ; 47(2): 751-760, 2021 02.
Article in English | MEDLINE | ID: mdl-33416093

ABSTRACT

Aldose reductase (AR) is known to detoxify aldehydes and prevent oxidative stress. Although AR exerts antioxidant effects, the role of AR in Parkinson's disease (PD) remains unclear. The objective of the present study was to investigate the protective effects of AR protein against 1­methyl­4­phenylpyridinium (MPP+)­induced SH­SY5Y cell death and 1­methyl­4­phenyl­1,2,3,6­tetrahydropyridine (MPTP)­induced PD in a mouse model using the cell permeable Tat­AR fusion protein. The results revealed that when Tat­AR protein was transduced into SH­SY5Y cells, it markedly protected the cells against MPP+­induced death and DNA fragmentation. It also reduced the activation of mitogen-activated protein kinase (MAPKs) and regulated the expression levels of Bcl­2, Bax and caspase­3. Immunohistochemical analysis revealed that when Tat­AR protein was transduced into the substantia nigra (SN) of mice with PD, it markedly inhibited dopaminergic neuronal cell death. Therefore, Tat­AR may be useful as a therapeutic protein for PD.


Subject(s)
Aldehyde Reductase/metabolism , Dopaminergic Neurons/enzymology , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System , Oxidative Stress , Substantia Nigra/enzymology , Aldehyde Reductase/genetics , Animals , Cell Death , Cell Line, Tumor , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/genetics , Humans , MPTP Poisoning/enzymology , MPTP Poisoning/genetics , Male , Mice
13.
Biomol Ther (Seoul) ; 29(3): 321-330, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33436533

ABSTRACT

Oxidative stress plays a crucial role in the development of neuronal disorders including brain ischemic injury. Thioredoxin 1 (Trx1), a 12 kDa oxidoreductase, has anti-oxidant and anti-apoptotic functions in various cells. It has been highly implicated in brain ischemic injury. However, the protective mechanism of Trx1 against hippocampal neuronal cell death is not identified yet. Using a cell permeable Tat-Trx1 protein, protective mechanism of Trx1 against hydrogen peroxide-induced cell death was examined using HT-22 cells and an ischemic animal model. Transduced Tat-Trx1 markedly inhibited intracellular ROS levels, DNA fragmentation, and cell death in H2O2-treatment HT-22 cells. Tat-Trx1 also significantly inhibited phosphorylation of ASK1 and MAPKs in signaling pathways of HT-22 cells. In addition, Tat-Trx1 regulated expression levels of Akt, NF-κB, and apoptosis related proteins. In an ischemia animal model, Tat-Trx1 markedly protected hippocampal neuronal cell death and reduced astrocytes and microglia activation. These findings indicate that transduced Tat-Trx1 might be a potential therapeutic agent for treating ischemic injury.

14.
BMB Rep ; 53(11): 582-587, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32684242

ABSTRACT

It is well known that oxidative stress participates in neuronal cell death caused production of reactive oxygen species (ROS). The increased ROS is a major contributor to the development of ischemic injury. Indoleamine 2,3-dioxygenase 1 (IDO-1) is involved in the kynurenine pathway in tryptophan metabolism and plays a role as an anti-oxidant. However, whether IDO-1 would inhibit hippocampal cell death is poorly known. Therefore, we explored the effects of cell permeable Tat-IDO-1 protein against oxidative stress-induced HT-22 cells and in a cerebral ischemia/reperfusion injury model. Transduced Tat-IDO-1 reduced cell death, ROS production, and DNA fragmentation and inhibited mitogen-activated protein kinases (MAPKs) activation in H2O2 exposed HT-22 cells. In the cerebral ischemia/ reperfusion injury model, Tat-IDO-1 transduced into the brain and passing by means of the blood-brain barrier (BBB) significantly prevented hippocampal neuronal cell death. These results suggest that Tat-IDO-1 may present an alternative strategy to improve from the ischemic injury. [BMB Reports 2020; 53(11): 582-587].


Subject(s)
Brain Ischemia/physiopathology , Indoleamine-Pyrrole 2,3,-Dioxygenase/pharmacology , Reperfusion Injury/therapy , Animals , Apoptosis/drug effects , Cell Death/drug effects , Cell Survival/drug effects , Gerbillinae , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Ischemia/metabolism , Male , Neurons/metabolism , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism
15.
Int J Mol Sci ; 21(8)2020 Apr 11.
Article in English | MEDLINE | ID: mdl-32290442

ABSTRACT

Reactive oxygen species (ROS) is major risk factor in neuronal diseases including ischemia. Although biliverdin reductase A (BLVRA) plays a pivotal role in cell survival via its antioxidant function, its role in hippocampal neuronal (HT-22) cells and animal ischemic injury is not clearly understood yet. In this study, the effects of transducible fusion protein Tat-BLVRA on H2O2-induced HT-22 cell death and in an animal ischemia model were investigated. Transduced Tat-BLVRA markedly inhibited cell death, DNA fragmentation, and generation of ROS. Transduced Tat-BLVRA inhibited the apoptosis and mitogen activated protein kinase (MAPK) signaling pathway and it passed through the blood-brain barrier (BBB) and significantly prevented hippocampal cell death in an ischemic model. These results suggest that Tat-BLVRA provides a possibility as a therapeutic molecule for ischemia.


Subject(s)
Apoptosis/drug effects , Gene Products, tat , MAP Kinase Signaling System/drug effects , Oxidative Stress/drug effects , Oxidoreductases Acting on CH-CH Group Donors , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Recombinant Fusion Proteins/pharmacology , Animals , Brain Ischemia/drug therapy , Brain Ischemia/etiology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Cell Line , Disease Models, Animal , Gene Products, tat/genetics , Gerbillinae , Hydrogen Peroxide/metabolism , Male , Neuroprotective Agents/pharmacology , Oxidoreductases Acting on CH-CH Group Donors/genetics , Reactive Oxygen Species/metabolism , Recombinant Fusion Proteins/genetics
16.
BMB Rep ; 53(2): 106-111, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31964467

ABSTRACT

Glutaredoxin 1 (GLRX1) has been recognized as an important regulator of redox signaling. Although GLRX1 plays an essential role in cell survival as an antioxidant protein, the function of GLRX1 protein in inflammatory response is still under investigation. Therefore, we wanted to know whether transduced PEP-1-GLRX1 protein inhibits lipopolysaccharide (LPS)- and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced inflammation. In LPS-exposed Raw 264.7 cells, PEP-1-GLRX1 inhibited cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), activation of mitogen activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-κB) expression levels. In a TPA-induced mouse-ear edema model, topically applied PEP-1-GLRX1 transduced into ear tissues and significantly ameliorated ear edema. Our data reveal that PEP-1-GLRX1 attenuates inflammation in vitro and in vivo, suggesting that PEP-1-GLRX1 may be a potential therapeutic protein for inflammatory diseases. [BMB Reports 2020; 53(2): 106-111].


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cysteamine/analogs & derivatives , Glutaredoxins/pharmacology , Inflammation/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , NF-kappa B/metabolism , Peptides , Animals , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Edema/chemically induced , Edema/metabolism , Edema/therapy , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred ICR , Mitogen-Activated Protein Kinases/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/metabolism , Phosphorylation , RAW 264.7 Cells , Signal Transduction/drug effects , Tetradecanoylphorbol Acetate/pharmacology
17.
BMB Rep ; 52(12): 695-699, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31722779

ABSTRACT

Cytokine-induced apoptosis inhibitor 1 (CIAPIN1), known as an anti-apoptotic and signal-transduction protein, plays a pivotal role in a variety of biological processes. However, the role of CIAPIN1 in inflammation is unclear. We investigated the protective effects of CIAPIN1 in lipopolysaccharide (LPS)-exposed Raw 264.7 cells and against inflammatory damage induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in a mouse model using cell-permeable Tat-CIAPIN1. Transduced Tat-CIAPIN1 significantly reduced ROS production and DNA fragmentation in LPS-exposed Raw 264.7 cells. Also, Tat-CIAPIN1 inhibited MAPKs and NF-κB activation, reduced the expression of Bax, and cleaved caspase-3, COX-2, iNOS, IL-6, and TNF-α in LPS-exposed cells. In a TPA-induced animal model, transduced Tat-CIAPIN1 drastically decreased inflammation damage and inhibited COX-2, iNOS, IL-6, and TNF-α expression. Therefore, these findings suggest that Tat-CIAPIN1 might lead to a new strategy for the treatment of inflammatory skin disorders. [BMB Reports 2019; 52(12): 695-699].


Subject(s)
Inflammation/therapy , Intracellular Signaling Peptides and Proteins , Animals , Apoptosis/drug effects , Cyclooxygenase 2/metabolism , Disease Models, Animal , Edema/therapy , Inflammation/immunology , Interleukin-6/metabolism , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred ICR , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Tetradecanoylphorbol Acetate/toxicity , Tumor Necrosis Factor-alpha/metabolism
18.
Exp Neurobiol ; 28(5): 612-627, 2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31698553

ABSTRACT

Aldose reductase (AR) protein, a member of the NADPH-dependent aldo-keto reductase family, reduces a wide range of aldehydes and enhances cell survival by inhibition of oxidative stress. Oxidative stress is known as one of the major pathological factor in ischemia. Since the precise function of AR protein in ischemic injury is fully unclear, we examined the function of AR protein in hippocampal neuronal (HT-22) cells and in an animal model of ischemia in this study. Cell permeable Tat-AR protein was produced by fusion of protein transduction domain in Tat for delivery into the cells. Tat-AR protein transduced into HT-22 cells and significantly inhibited cell death and regulated the mitogen-activate protein kinases (MAPKs), Bcl-2, Bax, and Caspase-3 under oxidative stress condition. In an ischemic animal model, Tat-AR protein transduced into the brain tissues through the blood-brain barrier (BBB) and drastically decreased neuronal cell death in hippocampal CA1 region. These results indicate that transduced Tat-AR protein has protective effects against oxidative stress-induced neuronal cell death in vitro and in vivo, suggesting that Tat-AR protein could be used as potential therapeutic agent in ischemic injury.

19.
Free Radic Biol Med ; 135: 68-78, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30818058

ABSTRACT

Cytokine-induced apoptosis inhibitor 1 (CIAPIN1) protein is widely expressed in the brain and it is known that this protein is involved in cell survival including dopaminergic neuronal cells. Oxidative stress is known as one of the major causes of degenerative diseases including ischemia. In this study, we investigated the effect of CIAPIN1 protein on hippocampal neuronal (HT-22) cell damage induced by hydrogen peroxide (H2O2) and in an animal model of ischemia using Tat-CIAPIN1 fusion protein which can transduce into cells. Tat-CIAPIN1 protein transduced into HT-22 cells and significantly inhibited cell death, DNA fragmentation, and reactive oxygen species (ROS) generation. Also, Tat-CIAPIN1 protein enhances cell survival via the regulation of Akt, MAPK, NF-κB and apoptotic signaling pathways in the H2O2 treated cells. In an ischemic animal model, Tat-CIAPIN1 protein transduced into the brain and protected neuronal cell death of hippocampal CA1 region induced by ischemic insult. In conclusion, we demonstrated that Tat-CIAPIN1 protein has protective effects against hippocampal neuronal cell damage induced by ischemic injury, suggesting that Tat-CIAPIN1 protein may provide a potential therapeutic agent for ischemia.


Subject(s)
Brain Ischemia/genetics , Gene Products, tat/genetics , Intracellular Signaling Peptides and Proteins/genetics , Neurodegenerative Diseases/genetics , Animals , Apoptosis/genetics , Brain/drug effects , Brain/metabolism , Brain Ischemia/pathology , Brain Ischemia/prevention & control , Cell Survival/drug effects , DNA Fragmentation/drug effects , Disease Models, Animal , Genetic Therapy , Hippocampus/metabolism , Hippocampus/pathology , Humans , Hydrogen Peroxide/metabolism , Intracellular Signaling Peptides and Proteins/therapeutic use , Mice , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/prevention & control , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
20.
Biochimie ; 156: 158-168, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30352250

ABSTRACT

Parkinson's disease (PD), a neurodegenerative disorder, is characterized by a loss of dopaminergic neurons in the substantia nigra (SN) of the brain and it is well known that the pathogenesis of PD is related to a number of risk factors including oxidative stress. Antioxidant 1 (ATOX1) protein plays a crucial role in various diseases as an antioxidant and chaperone. In this study, we determined whether Tat-ATOX1 could protect against 1-methyl-4-phenylpyridinium ion (MPP+)-induced SH-SY5Y cell death and in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animal model of PD. In the MPP+ exposed SH-SY5Y cells, Tat-ATOX1 markedly inhibited cell death and toxicities. In addition, Tat-ATOX1 markedly suppressed the activation of Akt and mitogen activated protein kinases (MAPKs) as well as cleavage of caspase-3 and Bax expression levels. In a MPTP-induced animal model, Tat-ATOX1 transduced into brain and protected dopaminergic neuronal cell loss. Taken together, Tat-ATOX1 inhibits dopaminergic neuronal death through the suppression of MAPKs and apoptotic signal pathways. Thus, Tat-ATOX1 represents a potential therapeutic protein drug candidate for PD.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Cation Transport Proteins , MPTP Poisoning/prevention & control , Metallochaperones , Molecular Chaperones , Recombinant Fusion Proteins , Animals , Cation Transport Proteins/biosynthesis , Cation Transport Proteins/genetics , Cell Death/drug effects , Cell Line, Tumor , Copper Transport Proteins , Humans , MPTP Poisoning/metabolism , MPTP Poisoning/pathology , Male , Metallochaperones/biosynthesis , Metallochaperones/genetics , Mice , Molecular Chaperones/biosynthesis , Molecular Chaperones/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...