Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
ACS Catal ; 13(13): 9090-9101, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37441232

ABSTRACT

Optical monitoring and screening of photocatalytic batch reactions using cuvettes ex situ is time-consuming, requires substantial amounts of samples, and does not allow the analysis of species with low extinction coefficients. Hollow-core photonic crystal fibers (HC-PCFs) provide an innovative approach for in situ reaction detection using ultraviolet-visible absorption spectroscopy, with the potential for high-throughput automation using extremely low sample volumes with high sensitivity for monitoring of the analyte. HC-PCFs use interference effects to guide light at the center of a microfluidic channel and use this to enhance detection sensitivity. They open the possibility of comprehensively studying photocatalysts to extract structure-activity relationships, which is unfeasible with similar reaction volume, time, and sensitivity in cuvettes. Here, we demonstrate the use of HC-PCF microreactors for the screening of the electron transfer properties of carbon dots (CDs), a nanometer-sized material that is emerging as a homogeneous light absorber in photocatalysis. The CD-driven photoreduction reaction of viologens (XV2+) to the corresponding radical monocation XV•+ is monitored in situ as a model reaction, using a sample volume of 1 µL per measurement and with a detectability of <1 µM. A range of different reaction conditions have been systematically studied, including different types of CDs (i.e., amorphous, graphitic, and graphitic nitrogen-doped CDs), surface chemistry, viologens, and electron donors. Furthermore, the excitation irradiance was varied to study its effect on the photoreduction rate. The findings are correlated with the electron transfer properties of CDs based on their electronic structure characterized by soft X-ray absorption spectroscopy. Optofluidic microreactors with real-time optical detection provide unique insight into the reaction dynamics of photocatalytic systems and could form the basis of future automated catalyst screening platforms, where samples are only available on small scales or at a high cost.

2.
Angew Chem Int Ed Engl ; 62(9): e202214788, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36478637

ABSTRACT

Hollow-core photonic crystal fibers (HC-PCFs) provide a novel approach for in situ UV/Vis spectroscopy with enhanced detection sensitivity. Here, we demonstrate that longer optical path lengths than afforded by conventional cuvette-based UV/Vis spectroscopy can be used to detect and identify the CoI and CoII states in hydrogen-evolving cobaloxime catalysts, with spectral identification aided by comparison with DFT-simulated spectra. Our findings show that there are two types of signals observed for these molecular catalysts; a transient signal and a steady-state signal, with the former being assigned to the CoI state and the latter being assigned to the CoII state. These observations lend support to a unimolecular pathway, rather than a bimolecular pathway, for hydrogen evolution. This study highlights the utility of fiber-based microreactors for understanding these and a much wider range of homogeneous photocatalytic systems in the future.

3.
J Opt Soc Am A Opt Image Sci Vis ; 39(11): 2026-2034, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36520699

ABSTRACT

The effects of time-varying measurement noise on transmission matrix acquisition processes are considered for the first time, to our knowledge. Dominant noise sources are discussed, and the noise properties of a typical interferometer system used for characterizing a multimode fiber transmission matrix are quantified. It is demonstrated that an appropriate choice of measurement basis allows a more accurate transmission matrix to be more quickly obtained in the presence of measurement noise. Finally, it is shown that characterizing the noise figure of the experimental system allows the inverse transmission matrix to be constructed with an ideal amount of regularization, which can in turn be used for optimal image acquisition.

4.
Appl Opt ; 61(15): 4315-4321, 2022 May 20.
Article in English | MEDLINE | ID: mdl-36256291

ABSTRACT

A complex-valued transmission matrix describing a scattering medium can be constructed from a sequence of many interferometric measurements. A major challenge in such experiments is to correct for rapid phase drift of the optical system during the data acquisition process, especially when the phase drifts significantly between consecutive measurements. Therefore, a new method is presented where the exact phase drift between two measurements is characterized and corrected using a single additional measurement. This approach removes the need to continuously track the phase and significantly relaxes the phase stability requirements of the interferometer, allowing transmission matrices to be constructed in the presence of fast and erratic phase drift.

5.
Methods Appl Fluoresc ; 10(4)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36084629

ABSTRACT

The fluorescent detection of proteins without labels or stains, which affect their behaviour and require additional genetic or chemical preparation, has broad applications to biological research. However, standard approaches require large sample volumes or analyse only a small fraction of the sample. Here we use optofluidic hollow-core photonic crystal fibres to detect and quantify sub-microlitre volumes of unmodified bovine serum albumin (BSA) protein down to 100 nM concentrations. The optofluidic fibre's waveguiding properties are optimised for guidance at the (auto)fluorescence emission wavelength, enabling fluorescence collection from a 10 cm long excitation region, increasing sensitivity. The observed spectra agree with spectra taken from a conventional cuvette-based fluorimeter, corrected for the guidance properties of the fibre. The BSA fluorescence depended linearly on BSA concentration, while only a small hysteresis effect was observed, suggesting limited biofouling of the fibre sensor. Finally, we briefly discuss how this method could be used to study aggregation kinetics. With small sample volumes, the ability to use unlabelled proteins, and continuous flow, the method will be of interest to a broad range of protein-related research.


Subject(s)
Photons , Serum Albumin, Bovine , Fluorescence
6.
Light Sci Appl ; 11(1): 281, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36151089

ABSTRACT

Nanomaterials capable of confining light are desirable for enhancing spectroscopies such as Raman scattering, infrared absorption, and nonlinear optical processes. Plasmonic superlattices have shown the ability to host collective resonances in the mid-infrared, but require stringent fabrication processes to create well-ordered structures. Here, we demonstrate how short-range-ordered Au nanoparticle multilayers on a mirror, self-assembled by a sub-nm molecular spacer, support collective plasmon-polariton resonances in the visible and infrared, continuously tunable beyond 11 µm by simply varying the nanoparticle size and number of layers. The resulting molecule-plasmon system approaches vibrational strong coupling, and displays giant Fano dip strengths, SEIRA enhancement factors ~ 106, light-matter coupling strengths g ~ 100 cm-1, Purcell factors ~ 106, and mode volume compression factors ~ 108. The collective plasmon-polariton mode is highly robust to nanoparticle vacancy disorder and is sustained by the consistent gap size defined by the molecular spacer. Structural disorder efficiently couples light into the gaps between the multilayers and mirror, enabling Raman and infrared sensing of sub-picolitre sample volumes.

7.
Chem Commun (Camb) ; 58(75): 10548-10551, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36047311

ABSTRACT

We report the use of optofluidic hollow-core photonic crystal fibres as microreactors for Stern-Volmer (SV) luminescence quenching analysis of visible-light photocatalytic reactions. This technology enables measurements on nanolitre volumes and paves the way for automated SV analyses in continuous flow that minimise catalyst and reagent usage. The method is showcased using a recently developed photoredox-catalysed α-C-H alkylation reaction of unprotected primary alkylamines.

8.
Nat Commun ; 13(1): 1651, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35347137

ABSTRACT

Improved analytical tools are urgently required to identify degradation and failure mechanisms in Li-ion batteries. However, understanding and ultimately avoiding these detrimental mechanisms requires continuous tracking of complex electrochemical processes in different battery components. Here, we report an operando spectroscopy method that enables monitoring the chemistry of a carbonate-based liquid electrolyte during electrochemical cycling in Li-ion batteries with a graphite anode and a LiNi0.8Mn0.1Co0.1O2 cathode. By embedding a hollow-core optical fibre probe inside a lab-scale pouch cell, we demonstrate the effective evolution of the liquid electrolyte species by background-free Raman spectroscopy. The analysis of the spectroscopy measurements reveals changes in the ratio of carbonate solvents and electrolyte additives as a function of the cell voltage and show the potential to track the lithium-ion solvation dynamics. The proposed operando methodology contributes to understanding better the current Li-ion battery limitations and paves the way for studies of the degradation mechanisms in different electrochemical energy storage systems.

9.
Anal Chem ; 93(2): 895-901, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33315379

ABSTRACT

Performing quantitative in situ spectroscopic analysis on minuscule sample volumes is a common difficulty in photochemistry. To address this challenge, we use a hollow-core photonic crystal fiber (HC-PCF) that guides light at the center of a microscale liquid channel and acts as an optofluidic microreactor with a reaction volume of less than 35 nL. The system was used to demonstrate in situ optical detection of photoreduction processes that are key components of many photocatalytic reaction schemes. The photoreduction of viologens (XV2+) to the radical XV•+ in a homogeneous mixture with carbon nanodot (CND) light absorbers is studied for a range of different carbon dots and viologens. Time-resolved absorption spectra, measured over several UV irradiation cycles, are interpreted with a quantitative kinetic model to determine photoreduction and photobleaching rate constants. The powerful combination of time-resolved, low-volume absorption spectroscopy and kinetic modeling highlights the potential of optofluidic microreactors as a highly sensitive, quantitative, and rapid screening platform for novel photocatalysts and flow chemistry in general.

10.
Opt Express ; 26(23): 30245-30254, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30469900

ABSTRACT

Higher-order modes up to LP33 are controllably excited in water-filled kagomé- and bandgap-style hollow-core photonic crystal fibers (HC-PCF). A spatial light modulator is used to create amplitude and phase distributions that closely match those of the fiber modes, resulting in typical launch efficiencies of 10-20% into the liquid-filled core. Modes, excited across the visible wavelength range, closely resemble those observed in air-filled kagomé HC-PCF and match numerical simulations. Mode indices are obtained by launching plane-waves at specific angles onto the fiber input-face and comparing the resulting intensity pattern to that of a particular mode. These results provide a framework for spatially-resolved sensing in HC-PCF microreactors and fiber-based optical manipulation.

11.
Light Sci Appl ; 7: 22, 2018.
Article in English | MEDLINE | ID: mdl-30839617

ABSTRACT

Optically levitated micro- and nanoparticles offer an ideal playground for investigating photon-phonon interactions over macroscopic distances. Here we report the observation of long-range optical binding of multiple levitated microparticles, mediated by intermodal scattering and interference inside the evacuated core of a hollow-core photonic crystal fibre (HC-PCF). Three polystyrene particles with a diameter of 1 µm are stably bound together with an inter-particle distance of ~40 µm, or 50 times longer than the wavelength of the trapping laser. The levitated bound-particle array can be translated to-and-fro over centimetre distances along the fibre. When evacuated to a gas pressure of 6 mbar, the collective mechanical modes of the bound-particle array are able to be observed. The measured inter-particle distance at equilibrium and mechanical eigenfrequencies are supported by a novel analytical formalism modelling the dynamics of the binding process. The HC-PCF system offers a unique platform for investigating the rich optomechanical dynamics of arrays of levitated particles in a well-isolated and protected environment.

12.
Analyst ; 142(6): 925-929, 2017 Mar 13.
Article in English | MEDLINE | ID: mdl-28112294

ABSTRACT

A hollow-core photonic crystal fibre (HC-PCF), guided by photonic bandgap effects or anti-resonant reflection, offers strong light confinement and long photochemical interaction lengths in a microscale channel filled with a solvent of refractive index lower than that of glass (usually fused silica). These unique advantages have motivated its recent use as a highly efficient and versatile microreactor for liquid-phase photochemistry and catalysis. In this work, we use a single-ring HC-PCF made from a high-index soft glass, thus enabling photochemical experiments in higher index solvents. The optimized light-matter interaction in the fibre is used to strongly enhance the reaction rate in a proof-of-principle photolysis reaction in toluene.

13.
RSC Adv ; 7(59): 37340-37348, 2017 Jul 29.
Article in English | MEDLINE | ID: mdl-29308187

ABSTRACT

We explore the efficacy of a hyphenated photonic crystal fibre microflow reactor - high-resolution mass spectrometer system as a method for screening the activity of potential new photoactivatable drugs. The use of light to activate drugs is an area of current development as it offers the possibility of reduced side effects due to improved spatial and temporal targeting and novel mechanisms of anticancer activity. The di-nuclear ruthenium complex [{(η6-indan)RuCl}2(µ-2,3-dpp)](PF6)2, previously studied by Magennis et al. (Inorg. Chem., 2007, 46, 5059) is used as a model drug to compare the system to standard irradiation techniques. The photodecomposition pathways using blue light radiation are the same for PCF and conventional cuvette methods. Reactions in the presence of small biomolecules 5'-guanosine monophosphate (5'-GMP), 5'-adenosine monophosphate (5'-AMP), l-cysteine (l-Cys) and glutathione (γ-l-glutamyl-l-cysteinyl-glycine, GSH) were studied. The complex was found to bind to nucleobases in the dark and this binding increased upon irradiation with 488 nm light, forming the adducts [(η6-indan)Ru2(µ-2,3-dpp) + 5'-GMP]2+ and [(η6-indan)Ru + (5'-AMP)]+. These findings are consistent with studies using conventional methods. The dinuclear complex also binds strongly to GSH after irradiation, a possible explanation for its lack of potency in cell line testing. The use of the PCF-MS system dramatically reduced the sample volume required and reduced the irradiation time by four orders of magnitude from 14 hours to 12 seconds. However, the reduced sample volume also results in a reduced MS signal intensity. The dead time of the combined system is 15 min, limited by the intrinsic dead volume of the HR-MS.

14.
Opt Express ; 24(3): 2370-82, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26906812

ABSTRACT

Since 1908, when Mie reported analytical expressions for the fields scattered by a spherical particle upon incidence of plane-waves, generalizing his analysis for the case of an arbitrary incident wave has been an open question because of the cancellation of the prefactor radial spherical Bessel function. This cancellation was obtained before by our own group for a highly focused beam centered in the objective. In this work, however, we show for the first time how these terms can be canceled out for any arbitrary incident field that satisfies Maxwells equations, and obtain analytical expressions for the beam shape coefficients. We show several examples on how to use our method to obtain analytical beam shape coefficients for: Bessel beams, general hollow waveguide modes and specific geometries such as cylindrical and rectangular. Our method uses the vector potential, which shows the interesting characteristic of being gauge invariant. These results are highly relevant for speeding up numerical calculation of light scattering applications such as the radiation forces acting on spherical particles placed in an arbitrary electromagnetic field, as in an optical tweezers system.

15.
Opt Express ; 22(21): 25570-9, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25401590

ABSTRACT

We introduce the concept of Doppler-assisted tomography (DAT) and show that it can be applied successfully to non-invasive imaging of the internal microstructure of a photonic crystal fiber. The fiber is spun at ~10 Hz around its axis and laterally illuminated with a laser beam. Monitoring the time-dependent Doppler shift of the light scattered by the hollow channels permits the azimuthal angle and radial position of individual channels to be measured. An inverse Radon transform is used to construct an image of the microstructure from the frequency-modulated scattered signal. We also show that DAT can image sub-wavelength features and monitor the structure along a tapered fiber, which is not possible using other techniques without cutting up the taper into several short pieces or filling it with index-matching oil. The non-destructive nature of DAT means that it could potentially be applied to image the fiber microstructure as it emerges from the drawing tower, or indeed to carry out tomography on any transparent microstructured cylindrical object.


Subject(s)
Doppler Effect , Light , Nanostructures/analysis , Photons , Tomography, X-Ray Computed/methods
16.
Chem Soc Rev ; 42(22): 8629-48, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-23753016

ABSTRACT

In this review, we introduce photonic crystal fibre as a novel optofluidic microdevice that can be employed as both a versatile chemical sensor and a highly efficient microreactor. We demonstrate that it provides an excellent platform in which light and chemical samples can strongly interact for quantitative spectroscopic analysis or photoactivation purposes. The use of photonic crystal fibre in photochemistry and sensing is discussed and recent results on gas and liquid sensing as well as on photochemical and catalytic reactions are reviewed. These developments demonstrate that the tight light confinement, enhanced light-matter interaction and reduced sample volume offered by photonic crystal fibre make it useful in a wide range of chemical applications.

17.
J Biophotonics ; 6(9): 743-52, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23281270

ABSTRACT

We introduce a unique method for laser-propelling individual cells over distances of 10s of cm through stationary liquid in a microfluidic channel. This is achieved by using liquid-filled hollow-core photonic crystal fiber (HC-PCF). HC-PCF provides low-loss light guidance in a well-defined single mode, resulting in highly uniform optical trapping and propulsive forces in the core which at the same time acts as a microfluidic channel. Cells are trapped laterally at the center of the core, typically several microns away from the glass interface, which eliminates adherence effects and external perturbations. During propagation, the velocity of the cells is conveniently monitored using a non-imaging Doppler velocimetry technique. Dynamic changes in velocity at constant optical powers up to 350 mW indicate stress-induced changes in the shape of the cells, which is confirmed by bright-field microscopy. Our results suggest that HC-PCF will be useful as a new tool for the study of single-cell biomechanics.


Subject(s)
Erythrocytes/cytology , Lasers , Microfluidic Analytical Techniques/instrumentation , Optical Fibers , Optical Tweezers , Photons , Biomechanical Phenomena , Cell Shape , Erythrocyte Deformability , Hot Temperature , Humans
18.
Methods Appl Fluoresc ; 1(1): 015003, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-29148436

ABSTRACT

We report the use of photonic crystal fibres (PCF) as spectrofluorimetric systems in which sample solutions are excited within the microstructure of the fibre. The use of intra-fibre excitation has several advantages that combine to enable highly sensitive measurements of fluorescence spectra and lifetimes: long path-lengths are achieved by the efficient guidance of the fundamental mode; sample volumes contained within the micron-scale structure are very small, only a few nanolitres per cm of path; collection and guidance of the emitted fluorescence is efficient and the fluorescence lifetime is unperturbed. Fluorophores in bulk solution can be studied in hollow core PCF, whereas the use of PCF with a suspended, solid core enables selective excitation of molecules in close proximity to the silica surface, through interaction with the evanescent field. We demonstrate the measurement of fluorescence spectra and fluorescence lifetimes in each of these excitation regimes and report the detection of attomole quantities of fluorescein.

19.
Opt Express ; 21(24): 29383-91, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24514492

ABSTRACT

We show how microparticles can be moved over long distances and precisely positioned in a low-loss air-filled hollow-core photonic crystal fiber using a coherent superposition of two co-propagating spatial modes, balanced by a backward-propagating fundamental mode. This creates a series of trapping positions spaced by half the beat-length between the forward-propagating modes (typically a fraction of a millimeter). The system allows a trapped microparticle to be moved along the fiber by continuously tuning the relative phase between the two forward-propagating modes. This mode-based optical conveyor belt combines long-range transport of microparticles with a positional accuracy of 1 µm. The technique also has potential uses in waveguide-based optofluidic systems.


Subject(s)
Micromanipulation/instrumentation , Nanoparticles/ultrastructure , Nanopores/ultrastructure , Optical Tweezers , Surface Plasmon Resonance/instrumentation , Air , Equipment Design , Equipment Failure Analysis , Materials Testing , Nanoparticles/radiation effects , Photons
20.
Lab Chip ; 12(18): 3356-61, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22767267

ABSTRACT

Photonic crystal fibre constitutes an optofluidic system in which light can be efficiently coupled into a solution-phase sample, contained within the hollow core of the fibre, over long path-lengths. This provides an ideal arrangement for the highly sensitive monitoring of photochemical reactions by absorption spectroscopy. We report here the use of UV/vis spectroscopy to measure the kinetics of the photochemical and thermal cis-trans isomerisation of sub-picomole samples of two azo dyes within the 19-µm diameter core of a photonic crystal fibre, over a path length of 30 cm. Photoisomerisation quantum yields are the first reported for "push-pull" azobenzenes in solution at room temperature; such measurements are challenging because of the fast thermal isomerisation process. Rate constants obtained for thermal isomerisation are in excellent agreement with those established previously in conventional cuvette-based measurements. The high sensitivity afforded by this intra-fibre method enables measurements in solvents in which the dyes are too insoluble to permit conventional cuvette-based measurements. The results presented demonstrate the potential of photonic crystal fibres as optofluidic elements in lab-on-a-chip devices for photochemical applications.


Subject(s)
Coloring Agents/chemistry , Optics and Photonics/instrumentation , Azo Compounds/chemistry , Isomerism , Kinetics , Light , Optics and Photonics/methods , Spectrophotometry, Ultraviolet , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...