Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 1561, 2023 01 28.
Article in English | MEDLINE | ID: mdl-36709380

ABSTRACT

The current multiphase, invitro study developed and validated a 3-dimensional convolutional neural network (3D-CNN) to generate partial dental crowns (PDC) for use in restorative dentistry. The effectiveness of desktop laser and intraoral scanners in generating data for the purpose of 3D-CNN was first evaluated (phase 1). There were no significant differences in surface area [t-stat(df) = - 0.01 (10), mean difference = - 0.058, P > 0.99] and volume [t-stat(df) = 0.357(10)]. However, the intraoral scans were chosen for phase 2 as they produced a greater level of volumetric details (343.83 ± 43.52 mm3) compared to desktop laser scanning (322.70 ± 40.15 mm3). In phase 2, 120 tooth preparations were digitally synthesized from intraoral scans, and two clinicians designed the respective PDCs using computer-aided design (CAD) workflows on a personal computer setup. Statistical comparison by 3-factor ANOVA demonstrated significant differences in surface area (P < 0.001), volume (P < 0.001), and spatial overlap (P < 0.001), and therefore only the most accurate PDCs (n = 30) were picked to train the neural network (Phase 3). The current 3D-CNN produced a validation accuracy of 60%, validation loss of 0.68-0.87, sensitivity of 1.00, precision of 0.50-0.83, and serves as a proof-of-concept that 3D-CNN can predict and generate PDC prostheses in CAD for restorative dentistry.


Subject(s)
Computer-Aided Design , Crowns , Humans , Neural Networks, Computer , Tooth Preparation , Dental Care , Imaging, Three-Dimensional/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...