Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22275894

ABSTRACT

BackgroundRepeated vaccination against SARS-CoV-2 increases serological response in kidney transplant recipients (KTR) with high interindividual variability. No decision support tool exists to predict SARS-CoV-2 vaccination response in KTR. MethodsWe developed, internally and externally validated five different multivariable prediction models of serological response after the third and fourth vaccine dose against SARS-CoV-2 in KTR. Using 27 candidate predictor variables, we applied statistical and machine learning approaches including logistic regression (LR), LASSO-regularized LR, random forest, and gradient boosted regression trees. For development and internal validation, data from 585 vaccinations were used. External validation was performed in four independent, international validation datasets comprising 191, 184, 254, and 323 vaccinations, respectively. FindingsLASSO-regularized LR performed on the whole development dataset yielded a 23- and 11- variable model, respectively. External validation showed AUC-ROC of 0.855, 0.749, 0.828, and 0.787 for the sparser 11-variable model, yielding an overall performance 0.819. InterpretationAn 11-variable LASSO-regularized LR model predicts vaccination response in KTR with good overall accuracy. Implemented as an online tool, it can guide decisions when choosing between different immunization strategies to improve protection against COVID-19 in KTR.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22272858

ABSTRACT

Immunogenicity of SARS-CoV-2 vaccines in kidney transplant recipients is limited, resulting in inadequately low serological response rates and low immunoglobulin (Ig) levels, correlating with reduced protection against death and hospitalization from COVID-19. We retrospectively examined the time course of anti-SARS-CoV-2 Ig antibody levels after up to five repeated vaccinations in 644 previously nonresponding kidney transplant recipients. Using anti SARS-CoV-2 IgG/IgA ELISA and the total Ig ECLIA assays, we compare antibody levels at 1 month with levels at 2 and 4 months, respectively. Additionally, we correlate the measurements of the used assays. Between 1 and 2 months, and between 1 and 4 months, mean anti-SARS-CoV-2 Ig levels in responders decreased by 14% and 25%, respectively, depending on the assay. Absolute Ig values and time course of antibody levels and showed high interindividual variability. Ig levels decreased by at least 20% in 77 of 148 paired samples with loss of sufficient serological protection over time occurring in 18 out of 148 (12.2%). IgG ELISA and total Ig ECLIA assays showed a strong positive correlation (Kendalls tau=0.78), yet the two assays determined divergent results in 99 of 751 (13.2%) measurements. IgG and IgA assays showed overall strong correlation but divergent results in 270 of 1.173 (23.0%) cases and only weak correlation of antibody levels in positive samples. Large interindividual variability and significant loss of serological protection after 4 months supports repeated serological sampling and consideration of shorter vaccination intervals in kidney transplant recipients.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22270017

ABSTRACT

Mortality from COVID-19 among kidney transplant recipients (KTR) is high, and their response to three vaccinations against SARS-CoV-2 is strongly impaired. We retrospectively analyzed serological response of up to five doses of SARS-CoV-2 vaccine in KTR from December 27, 2020, until December 31, 2021. Particularly, the influence of different dose adjustment regimens for mycophenolic acid (MPA) on serological response to fourth vaccination was analyzed. In total, 4.277 vaccinations against SARS-CoV-2 in 1.478 patients were analyzed. Serological response was 19.5% after 1.203 basic immunizations, and increased to 29.4%, 55.6%, and 57.5% in response to 603 third, 250 fourth and 40 fifth vaccinations, resulting in a cumulative response rate of 88.7%. In patients with calcineurin inhibitor and MPA maintenance immunosuppression, pausing MPA and adding 5 mg prednisolone equivalent before the fourth vaccination increased serological response rate to 75% in comparison to no dose adjustment (52%) or dose reduction (46%). Belatacept-treated patients had a response rate of 8.7% (4/46) after three vaccinations and 12.5% (3/25) after four vaccinations. Except for belatacept-treated patients, repeated SARS-CoV-2 vaccination of up to five times effectively induces serological response in kidney transplant recipients. It can be enhanced by pausing MPA at the time of vaccination.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-22270838

ABSTRACT

ImportanceResponse to SARS-CoV-2 vaccines in kidney transplant recipients (KTR) is severely reduced. Heterologous 3rd vaccination combining mRNA and vector vaccines did not increase seroconversion at four weeks after vaccination but evolution of antibody levels beyond the first month remain unknown. ObjectiveTo assess changes in antibody response following a 3rd vaccination with mRNA or vector vaccine in KTR from month one to month three after vaccination. Design, Setting and ParticipantsThree-month follow-up (pre-specified secondary endpoint) of a single-center, single-blinded, 1:1 randomized, controlled trial on 3rd vaccination against SARS-CoV-2 in 201 KTR who did not develop SARS-CoV-2 spike protein antibodies following two doses of an mRNA vaccine. Intervention(s)mRNA (BNT162b2 or mRNA-1273) or vector (Ad26COVS1) as 3rd SARS-CoV-2 vaccine Main Outcomes and MeasuresMain outcome was seroconversion at the second follow-up between 60-120 days after the 3rd vaccination. Subsequently, higher cut-off levels associated with neutralizing capacity and protective immunity were applied (i.e. >15, >100, >141 and >264 BAU/mL). In addition, trajectories of antibody levels from month one to month three were analyzed. Finally, SARS-CoV-2 specific CD4 and CD8 T-cells at four weeks were compared among the 18 top responders in both groups. ResultsA total of 169 patients were available for the three-month follow-up. Overall, seroconversion at three months was similar between both groups (45% versus 50% for mRNA and vector group, respectively; OR=1.24, 95%CI=[0.65, 2.37], p=0.539). However, when applying higher cut-off levels, a significantly larger number of individual in the vector group reached antibody levels > 141 and > 264 BAU/mL at the three-month follow-up (141 BAU/mL: 4% vs. 15% OR=4.96, 95%CI=[1.29, 28.21], p=0.009 and 264 BAU/mL: 1% vs. 10% OR=8.75, 95%CI=[1.13, 396.17], p=0.018 for mRNA vs. vector vaccine group, respectively). In line, antibody levels in seroconverted patients further increased from month one to month three in the vector group while remaining unchanged in the mRNA group (median increase: mRNA= 1.35 U/mL and vector = 27.6 U/mL, p = 0.004). Of particular note, there was no difference in the CD4 and CD8 T-cell response between the mRNA and vector vaccine group at month one. Conclusions and RelevanceDespite a similar overall seroconversion rate at three months following 3rd vaccination in KTR, a heterologous 3rd booster vaccination with Ad26COVS1 resulted in significantly higher antibody levels in responders. Trial RegistrationEurdraCT: 2021-002927-39

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21268478

ABSTRACT

Transplant recipients exhibit an impaired protective immunity after SARS-CoV-2 vaccination, potentially caused by mycophenolate (MPA) immunosuppression. Recent data from autoimmune patients suggest that temporary MPA hold might significantly improve booster vaccination outcomes. We applied a fourth dose of SARS-CoV-2 vaccine during temporary (5 weeks) MPA hold to 29 kidney transplant recipients, who had not mounted a humoral immune-response to previous vaccinations. Seroconversion until day 32 after vaccination was observed in 76% of patients, associated with acquisition of virus neutralizing capacity. Interestingly, 21/25 (84%) CNI-treated patients responded, but only 1/4 Belatacept-treated patients. In line with humoral responses, counts and relative frequencies of spike receptor binding domain (RBD) specific B cells were significantly increased on day 7 after vaccination, with an increase in RBD specific CD27++CD38+ plasmablasts. Whereas overall proportions of spike-reactive CD4+ T cells remained unaltered after the fourth dose, frequencies were positively correlated with specific IgG levels. Importantly, antigen-specific proliferating Ki67+ and in vivo activated PD1+ T cells significantly increased after re-vaccination during MPA hold, whereas cytokine production and memory differentiation remained unaffected. In summary, MPA hold was safe and augmented all arms of immunity during booster vaccination, suggesting its implementation in vaccination protocols for clinically stable transplant recipients.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-21262006

ABSTRACT

The interferon pathway represents a key antiviral defense mechanism and is being considered as a therapeutic target in COVID-19. Both, substitution of interferon and blocking interferon signaling through JAK STAT inhibition to limit cytokine storms have been proposed. However, little is known so far about possible abnormalities in STAT signaling in immune cells during SARS-CoV-2 infection. In the current study, we investigated downstream targets of interferon signaling, including STAT1, pSTAT1 and 2 and IRF1, 7 and 9 by flow cytometry in 30 patients with COVID-19, 17 with mild and 13 with severe infection. We report an upregulation of STAT1 and IRF9 in mild and severe COVID-19 cases, which correlated with the IFN-signature assessed by Siglec-1 (CD169) expression on peripheral monocytes. Most interestingly, Siglec-1 and STAT1 in CD14+ monocytes and plasmablasts showed lower expression among severe COVID-19 cases compared to mild cases. Contrary to the baseline whole protein STAT1 expression, the phosphorylation of STAT1 was enhanced in severe COVID-19 cases, indicating a dysbalanced JAK STAT signaling that fails to induce transcription of interferon stimulated response elements (ISRE). This abnormality persisted after IFN- and IFN-{gamma} stimulation of PBMCs from patients with severe COVID-19. The data suggest impaired STAT1 transcriptional upregulation among severely infected patients which may represent a potential predictive biomarker and may allow stratification of patients for certain interferon-pathway targeted treatments.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-21261966

ABSTRACT

BackgroundAccumulating evidence suggests that solid organ transplant recipients, as opposed to the general population, show strongly impaired responsiveness towards standard SARS-CoV-2 mRNA-based vaccination, demanding alternative strategies for protection of this vulnerable group. MethodsIn line with recent recommendations, a third dose of either heterologous ChAdOx1 (AstraZeneca) or homologous BNT162b2 (BioNTech) was administered to 25 kidney transplant recipients (KTR) without humoral response after 2 doses of BNT162b2, followed by analysis of serological responses and vaccine-specific B- and T-cell immunity. Results9/25 (36%) KTR under standard immunosuppressive treatment seroconverted until day 27 after the third vaccination, while one patient developed severe COVID-19 infection immediately after vaccination. Cellular analysis seven days after the third dose showed significantly elevated frequencies of viral spike protein receptor binding domain specific B cells in humoral responders as compared to non-responders. Likewise, portions of spike-reactive CD4+ T helper cells were significantly elevated in seroconverting patients. Furthermore, overall frequencies of IL-2+, IL-4+ and polyfunctional CD4+ T cells significantly increased after the third dose, whereas memory/effector differentiation remained unaffected. ConclusionsOur data suggest that a fraction of transplant recipients benefits from triple vaccination, where seroconversion is associated with quantitative and qualitative changes of cellular immunity. At the same time, the study highlights that modified vaccination approaches for immunosuppressed patients still remain an urgent medical need. Significance statementProtection of solid organ transplant recipients against SARS-Cov-2 by vaccination remains an unmet need given the low immunogenicity of available vaccines in the presence of immunosuppression. Administration of a third dose to 25 kidney transplant recipients (KTR) resulted in seroconversion in 36% of patients, associated with significant quantitative and functional changes within the spike-antigen-specific B-cell- and CD4+ T-helper cell compartment. Our data support the need for individual humoral monitoring of immunosuppressed individuals after vaccination as well as continued efforts to adapt vaccination protocols for this at-risk group.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-21260803

ABSTRACT

ObjectivesPatients with autoimmune inflammatory rheumatic diseases receiving rituximab (RTX) therapy show substantially impaired anti-SARS-CoV-2 vaccine humoral but partly inducible cellular immune responses. However, the complex relationship between antigen-specific B and T cells and the level of B cell repopulation necessary to achieve anti-vaccine responses remain largely unknown. MethodsAntibody responses to SARS-CoV-2 vaccines and induction of antigen-specific B and CD4/CD8 T cell subsets were studied in 19 rheumatoid arthritis (RA) and ANCA-associated vasculitis (AAV) patients receiving RTX, 12 RA patients on other therapies and 30 healthy controls after SARS-CoV-2 vaccination with either mRNA or vector based vaccines. ResultsA minimum of 10 B cells/{micro}L in the peripheral circulation was necessary in RTX patients to mount seroconversion to anti-S1 IgG upon SARS-CoV-2 vaccination. RTX patients lacking IgG seroconversion showed reduced antigen-specific B cells, lower frequency of TfH-like cells as well as less activated CD4 and CD8 T cells compared to IgG seroconverted RTX patients. Functionally relevant B cell depletion resulted in impaired IFN{gamma} secretion by spike-specific CD4 T cells. In contrast, antigen-specific CD8 T cells were reduced in patients independently of IgG formation. ConclusionsPatients receiving rituximab with B cell numbers above 10 B cells/{micro}l were able to mount humoral and more robust cellular responses after SARS-CoV-2 vaccination that may permit optimization of vaccination in these patients. Mechanistically, the data emphasize the crucial role of co-stimulatory B cell functions for the proper induction of CD4 responses propagating vaccine-specific B and plasma cell differentiation.

9.
Preprint in English | medRxiv | ID: ppmedrxiv-21255550

ABSTRACT

Patients with kidney failure are at increased risk during the COVID-19 pandemic and effective vaccinations are needed. It is not known how efficient mRNA vaccines mount B and plasma cell responses in dialysis patients (DP) or kidney transplant recipients (KTR) compared to healthy controls (HC). We studied humoral and B cell responses of 25 HC, 44 DP and 40 KTR. Markedly impaired anti-BNT162b2 responses were identified among KTR and DP compared to 100% seroconversion in HC. In DP, the response was delayed (3-4 weeks after boost) and reduced with anti-S1 IgG positivity in 31 (70.5%) and anti-S1 IgA in 30 (68.2%) of 44, respectively. In contrast, KTR did not develop IgG response except one patient who had prior unrecognized infection and developed anti-S1 IgG. The majority of antigen-specific B cells (RBD+) were identified in the plasmablast or post-switch memory B cell compartments in HC, whereas these RBD+ B cells were enriched among pre-switch and naive B cells from DP and KTR. Single cell transcriptome and CITE-seq analyses found reduced frequencies of plasmablasts, TCF7+CD27+GZMK+ T cells and proliferating MKI67-expressing lymphocytes among KTR non-responders. Importantly, the frequency and absolute number of antigen-specific circulating plasmablasts in the whole cohort correlated with the Ig response, a characteristic not reported for other vaccinations. In conclusion, this data indicate that lack of T cell help related to immunosuppression results in impaired germinal center differentiation of B and plasma cell memory. There is an urgent need to improve vaccination protocols in patients after kidney transplantation or on chronic dialysis. One Sentence SummaryKidney transplant recipients and dialysis patients show a markedly diminished humoral response and impaired molecular B cell memory formation upon vaccination with BNT162b2.

10.
Preprint in English | medRxiv | ID: ppmedrxiv-21254963

ABSTRACT

Novel mRNA-based vaccines have been proven powerful tools to combat the global pandemic caused by SARS-CoV2 with BNT162b2 efficiently protecting individuals from COVID-19 across a broad age range. Still, it remains largely unknown how renal insufficiency and immunosuppressive medication affect development of vaccine induced immunity. We therefore comprehensively analyzed humoral and cellular responses in kidney transplant recipients after prime-boost vaccination with BNT162b2. As opposed to all healthy vaccinees and the majority of hemodialysis patients, only 4/39 and 1/39 transplanted individuals showed IgA and IgG seroconversion at day 8{+/-}1 after booster immunization with minor changes until day 23{+/-}5, respectively. Although most transplanted patients mounted spike-specific T helper cell responses, frequencies were significantly reduced compared to controls and dialysis patients, accompanied by a broad impairment in effector cytokine production, memory differentiation and activation-related signatures. Spike-specific CD8+ T cell responses were less abundant than their CD4+ counterparts in healthy controls and hemodialysis patients and almost undetectable in transplant patients. Signs of alloreactivity promoted by BNT162b2 were not documented within the observation period. In summary, our data strongly suggest revised vaccination approaches in immunosuppressed patients, including individual immune monitoring for protection of this vulnerable group at risk to develop severe COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...