Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21258069

ABSTRACT

Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) until now imposes a serious burden to health systems globally. Despite worldwide vaccination, social distancing and wearing masks, the spread of the virus is still ongoing. One of the mechanisms how neutralizing antibodies (NAbs) block virus entry into cells encompasses interaction inhibition between the cell surface receptor angiotensin-converting enzyme 2 (ACE2) and the spike (S) protein of SARS-CoV-2. SARS-CoV-2 specific NAb development can be induced in the blood of cattle. Pregnant cows produce NAbs upon immunization, and antibodies move into the colostrum just before calving. Here we immunized cows with SARS-CoV-2 S1 receptor binding domain (RBD) protein in proper adjuvant solutions, followed by one boost with SARS-CoV-2 trimeric S protein, and purified immunoglobulins from colostrum. We demonstrate that this preparation indeed blocks interaction between the trimeric S protein and ACE2 in different in vitro assays. Moreover, we describe the formulation of purified immunoglobulin preparation into a nasal spray. When administered to human subjects, the formulation persists on the nasal mucosa for at least 4 hours as determined by a clinical study. Therefore, we are presenting a solution that shows great potential to serve as a prophylactic agent against SARS-CoV-2 infection as an additional measure to vaccination and wearing masks. Moreover, our technology allows for a rapid and versatile adaption for preparing prophylactic treatments against other diseases by using the defined characteristics of antibody movement into the colostrum. SignificanceSARS-CoV-2 infections continue to be a high-risk factor for mankind. Antibodies with the potential to neutralize the virus and thus its entry into the host cell have been shown to impose a potent measure against the infection. Human derived neutralizing antibodies are therapeutics and thus fall under the legislation of drugs. However, an alternative could be the purification of efficient neutralizing antibodies from other species. Here, we present immunization of pregnant cows with spike protein of SARS-CoV-2 which results in high quantities of colostrum immunoglobulins that can be easily harvested and safely purified within a remarkably short time. The colostrum immunoglobulin preparation has a great potential to serve in formulations that can be used as prophylactic agent against SARS-CoV-2 infection.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-448653

ABSTRACT

SARS-CoV-2 and its vaccine/immune-escaping variants continue to pose a serious threat to public health due to a paucity of effective, rapidly deployable, and widely available treatments. Here, we address these challenges by combining Pegasys (IFNa) and nafamostat to effectively suppress SARS-CoV-2 infection in cell culture and hamsters. Our results indicate that Serpin E1 is an important mediator of the antiviral activity of IFNa and that both Serpin E1 and camostat can target the same cellular factor TMPRSS2, which plays a critical role in viral replication. The low doses of the drugs in combination may have several clinical advantages, including fewer adverse events and improved patient outcome. Thus, our study may provide a proactive solution for the ongoing pandemic and potential future coronavirus outbreaks, which is still urgently required in many parts of the world.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-425331

ABSTRACT

There is an urgent need for new antivirals with powerful therapeutic potential and tolerable side effects. In the present study, we found that recombinant human interferon-alpha (IFNa) triggers intrinsic and extrinsic cellular antiviral responses, as well as reduces replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. Although IFNa alone was insufficient to completely abolish SARS-CoV-2 replication, combinations of IFNa with remdesivir or other antiviral agents (EIDD-2801, camostat, cycloheximide, or convalescent serum) showed strong synergy and effectively inhibited SARS-CoV-2 infection in human lung epithelial Calu-3 cells. Furthermore, we showed that the IFNa-remdesivir combination suppressed virus replication in human lung organoids, and that its single prophylactic dose attenuated SARS-CoV-2 infection in lungs of Syrian hamsters. Transcriptome and metabolomic analyses showed that the combination of IFNa-remdesivir suppressed virus-mediated changes in infected cells, although it affected the homeostasis of uninfected cells. We also demonstrated synergistic antiviral activity of IFNa2a-based combinations against other virus infections in vitro. Altogether, our results indicate that IFNa2a-based combination therapies can achieve higher efficacy while requiring lower dosage compared to monotherapies, making them attractive targets for further pre-clinical and clinical development.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20216820

ABSTRACT

BackgroundIn Estonia, during the first wave of COVID-19 total number of cases confirmed by PCR was 13.3/10,000, similar in most regions, including capital Tallinn, but in the hotspot of Estonian epidemic, an island Saaremaa, the cumulative incidence was 166.1/10,000. AimWe aimed to determine the prevalence of SARS-CoV-2 IgG antibodies in these two regions, symptoms associated with infection and factors associated with antibody concentrations. MethodsParticipants were selected using stratified (formed by age decades) random sampling and recruited by general practitioners. IgG were determined from sera by four assays. Symptoms of acute respiratory illness associated with seropositivity were analyzed by multiple correspondence analysis, antibody concentrations by multiple linear regression. ResultsTotal of 3608 individual were invited and 1960 recruited From May 8 to July 31, 2020. Seroprevalence was 1.5% (95% confidence interval (CI) 0.9-2.5) and 6.3% (95% CI 5.0-7.9), infection fatality rate 0.1% (95% CI 0.0-0.2) and 1.3% (95% CI 0.4-2.1) in Tallinn and Saaremaa, respectively. Of seropositive subjects 19.2% (14/73) had acute respiratory illness. Fever, diarrhea and the absence of cough and runny nose were associated with seropositivity in individuals aged 50 or more years. IgG concentrations were higher if fever, difficulty breathing, shortness of breath, chest pain or diarrhea was present, or hospitalization required. ConclusionSimilarly to other European countries the seroprevalence of SARS-CoV-2 in Estonia was low even in the hotspot region Saaremaa suggesting that majority of population is still susceptible to SARS-CoV-2. Focusing only on respiratory symptoms may delay accurate diagnosis of SARS-CoV-2 infection.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-299933

ABSTRACT

Combination therapies have become a standard for the treatment for HIV and HCV infections. They are advantageous over monotherapies due to better efficacy and reduced toxicity, as well as the ability to prevent the development of resistant viral strains and to treat viral co-infections. Here, we identify several new synergistic combinations against emerging and re-emerging viral infections in vitro. We observed synergistic activity of nelfinavir with investigational drug EIDD-2801 and convalescent serum against SARS-CoV-2 infection in human lung epithelial Calu-3 cells. We also demonstrated synergistic activity of vemurafenib combination with emetine, homoharringtonine, gemcitabine, or obatoclax against echovirus 1 infection in human lung epithelial A549 cells. We also found that combinations of sofosbuvir with brequinar and niclosamide were synergistic against HCV infection in hepatocyte derived Huh-7.5 cells, whereas combinations of monensin with lamivudine and tenofovir were synergistic against HIV-1 infection in human cervical TZM-bl cells. Finally, we present an online resource that summarizes novel and known antiviral drug combinations and their developmental status. Overall, the development of combinational therapies could have a global impact improving the preparedness and protection of the general population from emerging and re-emerging viral threats.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-091165

ABSTRACT

As of June 2020, the number of people infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) continues to skyrocket, with more than 6,5 million cases worldwide. Both the World Health Organization (WHO) and United Nations (UN) has highlighted the need for better control of SARS-CoV-2 infections. However, developing novel virus-specific vaccines, monoclonal antibodies and antiviral drugs against SARS-CoV-2 can be time-consuming and costly. Convalescent sera and safe-in-man broad-spectrum antivirals (BSAAs) are readily available treatment options. Here we developed a neutralization assay using SARS-CoV-2 strain and Vero-E6 cells. We identified most potent sera from recovered patients for treatment of SARS-CoV-2-infected patients. We also screened 136 safe-in-man broad-spectrum antivirals against SARS-CoV-2 infection in Vero-E6 cells and identified nelfinavir, salinomycin, amodiaquine, obatoclax, emetine and homoharringtonine. We found that combinations of virus-directed nelfinavir along with host-directed amodiaquine exhibited the highest synergy. Finally, we developed a website to disseminate the knowledge on available and emerging treatments of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...