Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Nat Commun ; 14(1): 5195, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673892

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy in need of new therapeutic options. Using unbiased analyses of super-enhancers (SEs) as sentinels of core genes involved in cell-specific function, here we uncover a druggable SE-mediated RNA-binding protein (RBP) cascade that supports PDAC growth through enhanced mRNA translation. This cascade is driven by a SE associated with the RBP heterogeneous nuclear ribonucleoprotein F, which stabilizes protein arginine methyltransferase 1 (PRMT1) to, in turn, control the translational mediator ubiquitin-associated protein 2-like. All three of these genes and the regulatory SE are essential for PDAC growth and coordinately regulated by the Myc oncogene. In line with this, modulation of the RBP network by PRMT1 inhibition reveals a unique vulnerability in Myc-high PDAC patient organoids and markedly reduces tumor growth in male mice. Our study highlights a functional link between epigenetic regulation and mRNA translation and identifies components that comprise unexpected therapeutic targets for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Male , Animals , Mice , RNA , Epigenesis, Genetic , Regulatory Sequences, Nucleic Acid , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/genetics , Methyltransferases , RNA-Binding Proteins/genetics
2.
Nature ; 616(7957): 553-562, 2023 04.
Article in English | MEDLINE | ID: mdl-37055640

ABSTRACT

Circulating tumour DNA (ctDNA) can be used to detect and profile residual tumour cells persisting after curative intent therapy1. The study of large patient cohorts incorporating longitudinal plasma sampling and extended follow-up is required to determine the role of ctDNA as a phylogenetic biomarker of relapse in early-stage non-small-cell lung cancer (NSCLC). Here we developed ctDNA methods tracking a median of 200 mutations identified in resected NSCLC tissue across 1,069 plasma samples collected from 197 patients enrolled in the TRACERx study2. A lack of preoperative ctDNA detection distinguished biologically indolent lung adenocarcinoma with good clinical outcome. Postoperative plasma analyses were interpreted within the context of standard-of-care radiological surveillance and administration of cytotoxic adjuvant therapy. Landmark analyses of plasma samples collected within 120 days after surgery revealed ctDNA detection in 25% of patients, including 49% of all patients who experienced clinical relapse; 3 to 6 monthly ctDNA surveillance identified impending disease relapse in an additional 20% of landmark-negative patients. We developed a bioinformatic tool (ECLIPSE) for non-invasive tracking of subclonal architecture at low ctDNA levels. ECLIPSE identified patients with polyclonal metastatic dissemination, which was associated with a poor clinical outcome. By measuring subclone cancer cell fractions in preoperative plasma, we found that subclones seeding future metastases were significantly more expanded compared with non-metastatic subclones. Our findings will support (neo)adjuvant trial advances and provide insights into the process of metastatic dissemination using low-ctDNA-level liquid biopsy.


Subject(s)
Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Mutation , Neoplasm Metastasis , Small Cell Lung Carcinoma , Humans , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Cohort Studies , Lung Neoplasms/blood , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neoplasm Metastasis/diagnosis , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Phylogeny , Small Cell Lung Carcinoma/pathology , Liquid Biopsy
3.
Front Cardiovasc Med ; 9: 948281, 2022.
Article in English | MEDLINE | ID: mdl-36337898

ABSTRACT

Aim: Adult mammalian cardiomyocytes are incapable of significant proliferation, limiting regeneration after myocardial injury. Overexpression of the transcription factor Myc has been shown to drive proliferation in the adult mouse heart, but only when combined with Cyclin T1. As constitutive HRas activity has been shown to stabilise Cyclin T1 in vivo, we aimed to establish whether Myc and HRas could also act cooperatively to induce proliferation in adult mammalian cardiomyocytes in vivo. Methods and results: Using a genetically modified mouse model, we confirmed that constitutive HRas activity (HRas G 12 V ) increased Cyclin T1 expression. HRas G 12 V and constitutive Myc expression together co-operate to drive cell-cycle progression of adult mammalian cardiomyocytes. However, stimulation of endogenous cardiac proliferation by the ectopic expression of HRas G 12 V and Myc also induced cardiomyocyte death, while Myc and Cyclin T1 expression did not. Conclusion: Co-expression of Cyclin T1 and Myc may be a therapeutically tractable approach for cardiomyocyte neo-genesis post injury, while cell death induced by HRas G 12 V and Myc expression likely limits this option as a regenerative therapeutic target.

4.
Nat Commun ; 13(1): 6782, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36351945

ABSTRACT

Germ-line hypomorphism of the pleiotropic transcription factor Myc in mice, either through Myc gene haploinsufficiency or deletion of Myc enhancers, delays onset of various cancers while mice remain viable and exhibit only relatively mild pathologies. Using a genetically engineered mouse model in which Myc expression may be systemically and reversibly hypomorphed at will, we asked whether this resistance to tumour progression is also emplaced when Myc hypomorphism is acutely imposed in adult mice. Indeed, adult Myc hypomorphism profoundly blocked KRasG12D-driven lung and pancreatic cancers, arresting their evolution at the early transition from indolent pre-tumour to invasive cancer. We show that such arrest is due to the incapacity of hypomorphic levels of Myc to drive release of signals that instruct the microenvironmental remodelling necessary to support invasive cancer. The cancer protection afforded by long-term adult imposition of Myc hypomorphism is accompanied by only mild collateral side effects, principally in haematopoiesis, but even these are circumvented if Myc hypomorphism is imposed metronomically whereas potent cancer protection is retained.


Subject(s)
Genes, ras , Pancreatic Neoplasms , Mice , Animals , Transcription Factors/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Cell Line, Tumor
5.
Life Sci Alliance ; 4(5)2021 05.
Article in English | MEDLINE | ID: mdl-33653688

ABSTRACT

The huge cadre of genes regulated by Myc has obstructed the identification of critical effectors that are essential for Myc-driven tumorigenesis. Here, we describe how only the lack of the receptor Fzd9, previously identified as a Myc transcriptional target, impairs sustained tumor expansion and ß-cell dedifferentiation in a mouse model of Myc-driven insulinoma, allows pancreatic islets to maintain their physiological structure and affects Myc-related global gene expression. Importantly, Wnt signaling inhibition in Fzd9-competent mice largely recapitulates the suppression of proliferation caused by Fzd9 deficiency upon Myc activation. Together, our results indicate that the Wnt signaling receptor Fzd9 is essential for Myc-induced tumorigenesis in pancreatic islets.


Subject(s)
Adenoma, Islet Cell/physiopathology , Carcinogenesis/metabolism , Frizzled Receptors/metabolism , Adenoma, Islet Cell/metabolism , Animals , Cell Movement , Cell Proliferation , Female , Frizzled Receptors/genetics , Frizzled Receptors/physiology , Genes, myc/genetics , Genes, myc/physiology , Islets of Langerhans/metabolism , Male , Mice , Wnt Signaling Pathway/genetics , Wnt Signaling Pathway/physiology , beta Catenin/metabolism
6.
Hepatology ; 73(3): 1028-1044, 2021 03.
Article in English | MEDLINE | ID: mdl-32460431

ABSTRACT

BACKGROUND AND AIMS: Hepatocytes undergo profound metabolic rewiring when primed to proliferate during compensatory regeneration and in hepatocellular carcinoma (HCC). However, the metabolic control of these processes is not fully understood. In order to capture the metabolic signature of proliferating hepatocytes, we applied state-of-the-art systems biology approaches to models of liver regeneration, pharmacologically and genetically activated cell proliferation, and HCC. APPROACH AND RESULTS: Integrating metabolomics, lipidomics, and transcriptomics, we link changes in the lipidome of proliferating hepatocytes to altered metabolic pathways including lipogenesis, fatty acid desaturation, and generation of phosphatidylcholine (PC). We confirm this altered lipid signature in human HCC and show a positive correlation of monounsaturated PC with hallmarks of cell proliferation and hepatic carcinogenesis. CONCLUSIONS: Overall, we demonstrate that specific lipid metabolic pathways are coherently altered when hepatocytes switch to proliferation. These represent a source of targets for the development of therapeutic strategies and prognostic biomarkers of HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Cell Proliferation , Hepatocytes/metabolism , Lipid Metabolism , Liver Neoplasms/metabolism , Animals , Gene Expression Profiling , Hepatocytes/physiology , Humans , Lipidomics , Lipogenesis , Male , Metabolic Networks and Pathways , Metabolomics , Mice , Mice, Inbred C57BL
7.
J Lipid Res ; 61(11): 1390-1399, 2020 11.
Article in English | MEDLINE | ID: mdl-32753459

ABSTRACT

Nonsmall cell lung cancer (NSCLC) is a leading cause of cancer-related deaths. While mutations in Kras and overexpression of Myc are commonly found in patients, the role of altered lipid metabolism in lung cancer and its interplay with oncogenic Myc is poorly understood. Here we use a transgenic mouse model of Kras-driven lung adenocarcinoma with reversible activation of Myc combined with surface analysis lipid profiling of lung tumors and transcriptomics to study the effect of Myc activity on cholesterol homeostasis. Our findings reveal that the activation of Myc leads to the accumulation of cholesteryl esters (CEs) stored in lipid droplets. Subsequent Myc deactivation leads to further increases in CEs, in contrast to tumors in which Myc was never activated. Gene expression analysis linked cholesterol transport and storage pathways to Myc activity. Our results suggest that increased Myc activity is associated with increased cholesterol influx, reduced efflux, and accumulation of CE-rich lipid droplets in lung tumors. Targeting cholesterol homeostasis is proposed as a promising avenue to explore for novel treatments of lung cancer, with diagnostic and stratification potential in human NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Cholesterol/metabolism , Lung Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Biological Transport , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Mice , Mice, Transgenic
8.
Nat Commun ; 11(1): 1827, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286286

ABSTRACT

It is unclear why some tissues are refractory to the mitogenic effects of the oncogene Myc. Here we show that Myc activation induces rapid transcriptional responses followed by proliferation in some, but not all, organs. Despite such disparities in proliferative response, Myc is bound to DNA at open elements in responsive (liver) and non-responsive (heart) tissues, but fails to induce a robust transcriptional and proliferative response in the heart. Using heart as an exemplar of a non-responsive tissue, we show that Myc-driven transcription is re-engaged in mature cardiomyocytes by elevating levels of the positive transcription elongation factor (P-TEFb), instating a large proliferative response. Hence, P-TEFb activity is a key limiting determinant of whether the heart is permissive for Myc transcriptional activation. These data provide a greater understanding of how Myc transcriptional activity is determined and indicate modification of P-TEFb levels could be utilised to drive regeneration of adult cardiomyocytes for the treatment of heart myopathies.


Subject(s)
Myocardium/metabolism , Proto-Oncogene Proteins c-myc/genetics , Transcription, Genetic , Animals , Cell Proliferation/genetics , Chromatin/metabolism , Cyclin T/metabolism , Mice , Myocytes, Cardiac/metabolism , Organ Specificity , Phosphorylation , Positive Transcriptional Elongation Factor B/metabolism , Protein Binding , Proto-Oncogene Proteins c-myc/metabolism , Transcriptional Activation/genetics
9.
Cancer Discov ; 10(4): 588-607, 2020 04.
Article in English | MEDLINE | ID: mdl-31941709

ABSTRACT

The signature features of pancreatic ductal adenocarcinoma (PDAC) are its fibroinflammatory stroma, poor immune activity, and dismal prognosis. We show that acute activation of Myc in indolent pancreatic intraepithelial neoplasm (PanIN) epithelial cells in vivo is, alone, sufficient to trigger immediate release of instructive signals that together coordinate changes in multiple stromal and immune-cell types and drive transition to pancreatic adenocarcinomas that share all the characteristic stromal features of their spontaneous human counterpart. We also demonstrate that this Myc-driven PDAC switch is completely and immediately reversible: Myc deactivation/inhibition triggers meticulous disassembly of advanced PDAC tumor and stroma and concomitant death of tumor cells. Hence, both the formation and deconstruction of the complex PDAC phenotype are continuously dependent on a single, reversible Myc switch. SIGNIFICANCE: We show that Myc activation in indolent Kras G12D-induced PanIN epithelium acts as an immediate pleiotropic switch, triggering tissue-specific signals that instruct all the diverse signature stromal features of spontaneous human PDAC. Subsequent Myc deactivation or inhibition immediately triggers a program that coordinately disassembles PDAC back to PanIN.See related commentary by English and Sears, p. 495.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , Animals , Carcinoma, Pancreatic Ductal/pathology , Genes, myc , Humans , Mice , Pancreatic Neoplasms/pathology , Phenotype , Prognosis , Proto-Oncogene Proteins p21(ras)/genetics
10.
Proc Natl Acad Sci U S A ; 116(44): 22399-22408, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31611367

ABSTRACT

Cells with higher levels of Myc proliferate more rapidly and supercompetitively eliminate neighboring cells. Nonetheless, tumor cells in aggressive breast cancers typically exhibit significant and stable heterogeneity in their Myc levels, which correlates with refractoriness to therapy and poor prognosis. This suggests that Myc heterogeneity confers some selective advantage on breast tumor growth and progression. To investigate this, we created a traceable MMTV-Wnt1-driven in vivo chimeric mammary tumor model comprising an admixture of low-Myc- and reversibly switchable high-Myc-expressing clones. We show that such tumors exhibit interclonal mutualism wherein cells with high-Myc expression facilitate tumor growth by promoting protumorigenic stroma yet concomitantly suppress Wnt expression, which renders them dependent for survival on paracrine Wnt provided by low-Myc-expressing clones. To identify any therapeutic vulnerabilities arising from such interdependency, we modeled Myc/Ras/p53/Wnt signaling cross talk as an executable network for low-Myc, for high-Myc clones, and for the 2 together. This executable mechanistic model replicated the observed interdependence of high-Myc and low-Myc clones and predicted a pharmacological vulnerability to coinhibition of COX2 and MEK. This was confirmed experimentally. Our study illustrates the power of executable models in elucidating mechanisms driving tumor heterogeneity and offers an innovative strategy for identifying combination therapies tailored to the oligoclonal landscape of heterogenous tumors.


Subject(s)
Genetic Heterogeneity , Mammary Neoplasms, Experimental/genetics , Models, Theoretical , Proto-Oncogene Proteins c-myc/genetics , Animals , Drug Resistance, Neoplasm , Female , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mice , Proto-Oncogene Proteins c-myc/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Wnt Signaling Pathway , ras Proteins/genetics , ras Proteins/metabolism
11.
Cancer Discov ; 9(9): 1268-1287, 2019 09.
Article in English | MEDLINE | ID: mdl-31263025

ABSTRACT

Activating KRAS mutations are found in nearly all cases of pancreatic ductal adenocarcinoma (PDAC), yet effective clinical targeting of oncogenic KRAS remains elusive. Understanding of KRAS-dependent PDAC-promoting pathways could lead to the identification of vulnerabilities and the development of new treatments. We show that oncogenic KRAS induces BNIP3L/NIX expression and a selective mitophagy program that restricts glucose flux to the mitochondria and enhances redox capacity. Loss of Nix restores functional mitochondria to cells, increasing demands for NADPH reducing power and decreasing proliferation in glucose-limited conditions. Nix deletion markedly delays progression of pancreatic cancer and improves survival in a murine (KPC) model of PDAC. Although conditional Nix ablation in vivo initially results in the accumulation of mitochondria, mitochondrial content eventually normalizes via increased mitochondrial clearance programs, and pancreatic intraepithelial neoplasia (PanIN) lesions progress to PDAC. We identify the KRAS-NIX mitophagy program as a novel driver of glycolysis, redox robustness, and disease progression in PDAC. SIGNIFICANCE: NIX-mediated mitophagy is a new oncogenic KRAS effector pathway that suppresses functional mitochondrial content to stimulate cell proliferation and augment redox homeostasis. This pathway promotes the progression of PanIN to PDAC and represents a new dependency in pancreatic cancer.This article is highlighted in the In This Issue feature, p. 1143.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Membrane Proteins/metabolism , Mitochondria/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Glycolysis , Humans , Membrane Proteins/genetics , Mice , Mitophagy , Mutation , NADP/metabolism , Neoplasm Transplantation , Oxidation-Reduction , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Tumor Suppressor Proteins/genetics
12.
Nat Commun ; 9(1): 3327, 2018 08 20.
Article in English | MEDLINE | ID: mdl-30127402

ABSTRACT

Patients diagnosed with lung squamous cell carcinoma (LUSC) have limited targeted therapies. We report here the identification and characterisation of BCL11A, as a LUSC oncogene. Analysis of cancer genomics datasets revealed BCL11A to be upregulated in LUSC but not in lung adenocarcinoma (LUAD). Experimentally we demonstrate that non-physiological levels of BCL11A in vitro and in vivo promote squamous-like phenotypes, while its knockdown abolishes xenograft tumour formation. At the molecular level we found that BCL11A is transcriptionally regulated by SOX2 and is required for its oncogenic functions. Furthermore, we show that BCL11A and SOX2 regulate the expression of several transcription factors, including SETD8. We demonstrate that shRNA-mediated or pharmacological inhibition of SETD8 selectively inhibits LUSC growth. Collectively, our study indicates that BCL11A is integral to LUSC pathology and highlights the disruption of the BCL11A-SOX2 transcriptional programme as a novel candidate for drug development.


Subject(s)
Carcinoma, Squamous Cell/genetics , Carrier Proteins/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Nuclear Proteins/metabolism , SOXB1 Transcription Factors/metabolism , Animals , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Cell Proliferation/genetics , Gene Knockdown Techniques , Genetic Loci , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Lung/pathology , Lung Neoplasms/drug therapy , Mice , Oncogenes , Organoids/pathology , Protein Binding , Repressor Proteins
13.
Cell ; 171(6): 1301-1315.e14, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29195074

ABSTRACT

The two oncogenes KRas and Myc cooperate to drive tumorigenesis, but the mechanism underlying this remains unclear. In a mouse lung model of KRasG12D-driven adenomas, we find that co-activation of Myc drives the immediate transition to highly proliferative and invasive adenocarcinomas marked by highly inflammatory, angiogenic, and immune-suppressed stroma. We identify epithelial-derived signaling molecules CCL9 and IL-23 as the principal instructing signals for stromal reprogramming. CCL9 mediates recruitment of macrophages, angiogenesis, and PD-L1-dependent expulsion of T and B cells. IL-23 orchestrates exclusion of adaptive T and B cells and innate immune NK cells. Co-blockade of both CCL9 and IL-23 abrogates Myc-induced tumor progression. Subsequent deactivation of Myc in established adenocarcinomas triggers immediate reversal of all stromal changes and tumor regression, which are independent of CD4+CD8+ T cells but substantially dependent on returning NK cells. We show that Myc extensively programs an immune suppressive stroma that is obligatory for tumor progression.


Subject(s)
Adenocarcinoma/immunology , Adenoma/immunology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenoma/genetics , Adenoma/pathology , Animals , Carcinogenesis , Chemokines, CC/immunology , Disease Models, Animal , Female , Inflammation/immunology , Inflammation/metabolism , Interleukin-23/immunology , Lung Neoplasms/pathology , Macrophage Inflammatory Proteins/immunology , Macrophages/immunology , Male , Mice , Tumor Microenvironment
14.
Sci Rep ; 7(1): 9932, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28855541

ABSTRACT

While genetically engineered mice have made an enormous contribution towards the elucidation of human disease, it has hitherto not been possible to tune up or down the level of expression of any endogenous gene. Here we describe compound genetically modified mice in which expression of the endogenous E2f3 gene may be either reversibly elevated or repressed in adult animals by oral administration of tetracycline. This technology is, in principle, applicable to any endogenous gene, allowing direct determination of both elevated and reduced gene expression in physiological and pathological processes. Applying this switchable technology to the key cell cycle transcription factor E2F3, we demonstrate that elevated levels of E2F3 drive ectopic proliferation in multiple tissues. By contrast, E2F3 repression has minimal impact on tissue proliferation or homeostasis in the majority of contexts due to redundancy of adult function with E2F1 and E2F2. In the absence of E2F1 and E2F2, however, repression of E2F3 elicits profound reduction of proliferation in the hematopoietic compartments that is rapidly lethal in adult animals.


Subject(s)
E2F3 Transcription Factor/genetics , Genetic Engineering/methods , Tetracycline/administration & dosage , Animals , Cell Proliferation , Gene Expression Regulation/drug effects , Humans , Mice , Promoter Regions, Genetic , Tetracycline/pharmacology , Up-Regulation
15.
Clin Cancer Res ; 23(7): 1647-1655, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28373363

ABSTRACT

The "hallmarks" of pancreatic ductal adenocarcinoma (PDAC) include proliferative, invasive, and metastatic tumor cells and an associated dense desmoplasia comprised of fibroblasts, pancreatic stellate cells, extracellular matrix, and immune cells. The oncogenically activated pancreatic epithelium and its associated stroma are obligatorily interdependent, with the resulting inflammatory and immunosuppressive microenvironment contributing greatly to the evolution and maintenance of PDAC. The peculiar pancreas-specific tumor phenotype is a consequence of oncogenes hacking the resident pancreas regenerative program, a tissue-specific repair mechanism regulated by discrete super enhancer networks. Defined as genomic regions containing clusters of multiple enhancers, super enhancers play pivotal roles in cell/tissue specification, identity, and maintenance. Hence, interfering with such super enhancer-driven repair networks should exert a disproportionately disruptive effect on tumor versus normal pancreatic tissue. Novel drugs that directly or indirectly inhibit processes regulating epigenetic status and integrity, including those driven by histone deacetylases, histone methyltransferase and hydroxylases, DNA methyltransferases, various metabolic enzymes, and bromodomain and extraterminal motif proteins, have shown the feasibility of disrupting super enhancer-dependent transcription in treating multiple tumor types, including PDAC. The idea that pancreatic adenocarcinomas rely on embedded super enhancer transcriptional mechanisms suggests a vulnerability that can be potentially targeted as novel therapies for this intractable disease. Clin Cancer Res; 23(7); 1647-55. ©2017 AACRSee all articles in this CCR Focus section, "Pancreatic Cancer: Challenge and Inspiration."


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Enhancer Elements, Genetic , Tumor Microenvironment/genetics , Adenocarcinoma/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Humans , Molecular Targeted Therapy , Pancreas/pathology , Pancreatic Stellate Cells/pathology
16.
Am J Respir Crit Care Med ; 195(11): 1494-1508, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28199128

ABSTRACT

RATIONALE: Improving the early detection and chemoprevention of lung cancer are key to improving outcomes. The pathobiology of early squamous lung cancer is poorly understood. We have shown that amplification of sex-determining region Y-box 2 (SOX2) is an early and consistent event in the pathogenesis of this disease, but its functional oncogenic potential remains uncertain. We tested the impact of deregulated SOX2 expression in a novel organotypic system that recreates the molecular and microenvironmental context in which squamous carcinogenesis occurs. OBJECTIVES: (1) To develop an in vitro model of bronchial dysplasia that recapitulates key molecular and phenotypic characteristics of the human disease; (2) to test the hypothesis that SOX2 deregulation is a key early event in the pathogenesis of bronchial dysplasia; and (3) to use the model for studies on pathogenesis and chemoprevention. METHODS: We engineered the inducible activation of oncogenes in immortalized bronchial epithelial cells. We used three-dimensional tissue culture to build an organotypic model of bronchial dysplasia. MEASUREMENTS AND MAIN RESULTS: We recapitulated human bronchial dysplasia in vitro. SOX2 deregulation drives dysplasia, and loss of tumor promoter 53 is a cooperating genetic event that potentiates the dysplastic phenotype. Deregulated SOX2 alters critical genes implicated in hallmarks of cancer progression. Targeted inhibition of AKT prevents the initiation of the dysplastic phenotype. CONCLUSIONS: In the appropriate genetic and microenvironmental context, acute deregulation of SOX2 drives bronchial dysplasia. This confirms its oncogenic potential in human cells and affords novel insights into the impact of SOX2 deregulation. This model can be used to test therapeutic agents aimed at chemoprevention.


Subject(s)
Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/physiopathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/physiopathology , Lung Neoplasms/genetics , Lung Neoplasms/physiopathology , SOXB1 Transcription Factors/genetics , Cell Culture Techniques , Humans , Models, Biological
17.
Cancer Res ; 76(16): 4608-18, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27335109

ABSTRACT

MYC-mediated pathogenesis in lung cancer continues to attract interest for new therapeutic strategies. In this study, we describe a transgenic mouse model of KRAS-driven lung adenocarcinoma that affords reversible activation of MYC, used here as a tool for lipidomic profiling of MYC-dependent lung tumors formed in this model. Advanced mass spectrometric imaging and surface analysis techniques were used to characterize the spatial and temporal changes in lipid composition in lung tissue. We found that normal lung tissue was characterized predominantly by saturated phosphatidylcholines and phosphatidylglycerols, which are major lipid components of pulmonary surfactant. In contrast, tumor tissues displayed an increase in phosphatidylinositols and arachidonate-containing phospholipids that can serve as signaling precursors. Deactivating MYC resulted in a rapid and dramatic decrease in arachidonic acid and its eicosanoid metabolites. In tumors with high levels of MYC, we found an increase in cytosolic phospholipase A2 (cPLA2) activity with a preferential release of membrane-bound arachidonic acid, stimulating the lipoxygenase (LOX) and COX pathways also amplified by MYC at the level of gene expression. Deactivating MYC lowered cPLA2 activity along with COX2 and 5-LOX mRNA levels. Notably, inhibiting the COX/5-LOX pathways in vivo reduced tumor burden in a manner associated with reduced cell proliferation. Taken together, our results show how MYC drives the production of specific eicosanoids critical for lung cancer cell survival and proliferation, with possible implications for the use of COX and LOX pathway inhibitors for lung cancer therapy. Cancer Res; 76(16); 4608-18. ©2016 AACR.


Subject(s)
Adenocarcinoma/metabolism , Eicosanoids/metabolism , Lipid Metabolism/physiology , Lung Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Animals , Disease Models, Animal , Immunohistochemistry , Lung Neoplasms/pathology , Mass Spectrometry , Mice , Mice, Transgenic , Polymerase Chain Reaction , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction/physiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
Cancer Res ; 76(12): 3463-72, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27197165

ABSTRACT

Tumors driven by activation of the transcription factor MYC generally show oncogene addiction. However, the gene expression programs that depend upon sustained MYC activity remain unknown. In this study, we employed a mouse model of liver carcinoma driven by a reversible tet-MYC transgene, combined with chromatin immunoprecipitation and gene expression profiling to identify MYC-dependent regulatory events. As previously reported, MYC-expressing mice exhibited hepatoblastoma- and hepatocellular carcinoma-like tumors, which regressed when MYC expression was suppressed. We further show that cellular transformation, and thus initiation of liver tumorigenesis, were impaired in mice harboring a MYC mutant unable to associate with the corepressor protein MIZ1 (ZBTB17). Notably, switching off the oncogene in advanced carcinomas revealed that MYC was required for the continuous activation and repression of distinct sets of genes, constituting no more than half of all genes deregulated during tumor progression and an even smaller subset of all MYC-bound genes. Altogether, our data provide the first detailed analysis of a MYC-dependent transcriptional program in a fully developed carcinoma and offer a guide to identifying the critical effectors contributing to MYC-driven tumor maintenance. Cancer Res; 76(12); 3463-72. ©2016 AACR.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Oncogenes , Proto-Oncogene Proteins c-myc/physiology , Transcription, Genetic , Animals , Cells, Cultured , Gene Expression Regulation, Neoplastic , Humans , Mice , Promoter Regions, Genetic
19.
Mol Cell Biol ; 36(3): 438-51, 2016 02 01.
Article in English | MEDLINE | ID: mdl-26598601

ABSTRACT

The restoration of p53 has been suggested as a therapeutic approach in tumors. However, the timing of p53 restoration in relation to its efficacy during tumor progression still is unclear. We now show that the restoration of p53 in murine premalignant proliferating pineal lesions resulted in cellular senescence, while p53 restoration in invasive pineal tumors did not. The effectiveness of p53 restoration was not dependent on p19(Arf) expression but showed an inverse correlation with Mdm2 expression. In tumor cells, p53 restoration became effective when paired with either DNA-damaging therapy or with nutlin, an inhibitor of p53-Mdm2 interaction. Interestingly, the inactivation of p53 after senescence resulted in reentry into the cell cycle and rapid tumor progression. The evaluation of a panel of human supratentorial primitive neuroectodermal tumors (sPNET) showed low activity of the p53 pathway. Together, these data suggest that the restoration of the p53 pathway has different effects in premalignant versus invasive pineal tumors, and that p53 activation needs to be continually sustained, as reversion from senescence occurs rapidly with aggressive tumor growth when p53 is lost again. Finally, p53 restoration approaches may be worth exploring in sPNET, where the p53 gene is intact but the pathway is inactive in the majority of examined tumors.


Subject(s)
Brain Neoplasms/pathology , Cellular Senescence , Neuroectodermal Tumors, Primitive/pathology , Pineal Gland/pathology , Pinealoma/pathology , Tumor Suppressor Protein p53/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Proliferation , Gene Deletion , Gene Expression Regulation, Neoplastic , Humans , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neuroectodermal Tumors, Primitive/genetics , Neuroectodermal Tumors, Primitive/metabolism , Pineal Gland/metabolism , Pinealoma/genetics , Pinealoma/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/genetics
20.
Cancer Cell ; 28(6): 743-757, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26678338

ABSTRACT

In several developmental lineages, an increase in MYC expression drives the transition from quiescent stem cells to transit-amplifying cells. We show that MYC activates a stereotypic transcriptional program of genes involved in cell growth in mammary epithelial cells. This change in gene expression indirectly inhibits the YAP/TAZ co-activators, which maintain the clonogenic potential of these cells. We identify a phospholipase of the mitochondrial outer membrane, PLD6, as the mediator of MYC activity. MYC-dependent growth strains cellular energy resources and stimulates AMP-activated kinase (AMPK). PLD6 alters mitochondrial fusion and fission dynamics downstream of MYC. This change activates AMPK, which in turn inhibits YAP/TAZ. Mouse models and human pathological data show that MYC enhances AMPK and suppresses YAP/TAZ activity in mammary tumors.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Breast Neoplasms/metabolism , Epithelial Cells/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mammary Glands, Human/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Phosphoproteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , AMP-Activated Protein Kinases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line , Cell Lineage , Computational Biology , Databases, Genetic , Enzyme Activation , Enzyme Induction , Epithelial Cells/pathology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mammary Glands, Human/pathology , Mice, Transgenic , Mitochondria/pathology , Phenotype , Phospholipase D/biosynthesis , Phospholipase D/genetics , Phosphoproteins/genetics , Phosphorylation , Proto-Oncogene Proteins c-myc/genetics , RNA Interference , Signal Transduction , Time Factors , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Transfection , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...