Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Viral Hepat ; 30(3): 209-222, 2023 03.
Article in English | MEDLINE | ID: mdl-36302125

ABSTRACT

Treatment for chronic hepatitis B virus infection (cHBV) is mostly indefinite, with new finite-duration therapies needed. We report safety, pharmacokinetics and antiviral activity of the investigational HBV core inhibitor ABI-H2158. This Phase 1a/b study (NCT03714152) had three parts: Part A, participants received a single ascending oral dose of ABI-H2158 (5-500 mg) or placebo; Part B, participants received multiple doses of ABI-H2158 300 mg once (QD) or twice (BID) daily or placebo, for 10 days; Part C, cHBV patients received ABI-H2158 (100, 300, or 500 mg QD or 300 mg BID) or placebo, for 14 days. Ninety-three participants enrolled. In Parts A/B, there were no serious adverse events (SAEs) or deaths, and all treatment-emergent AEs (TEAEs) were Grade 1. In Part C, two patients had Grade 3 TEAEs unrelated to ABI-H2158; there were no deaths, SAEs or Grade 4 TEAEs. In Part A, median time to maximum ABI-H2158 plasma concentration (Tmax ) and mean terminal elimination half-life (t½ ) were 1-4 and 9.8-20.7 h, and area under the plasma concentration-time curve increased dose proportionally. In Part B, Day 10 Tmax was 2 h, mean t½ was 15.5-18.4 h, and exposure accumulated 1.7- to 3.1-fold. In Part C, Day 14 Tmax was 1 h, exposure accumulated 1.4- to 1.8-fold, and ABI-H2158 was associated with >2 log10 declines in HBV nucleic acids. In conclusion, ABI-H2158 in cHBV patients following 14 days of dosing was well tolerated and demonstrated potent antiviral activity. Safety and pharmacokinetics supported future QD dosing.


Subject(s)
Antiviral Agents , Hepatitis B, Chronic , Humans , Antiviral Agents/therapeutic use , Hepatitis B virus , Hepatitis B, Chronic/drug therapy , Double-Blind Method , Dose-Response Relationship, Drug
2.
J Hepatol ; 77(5): 1265-1275, 2022 11.
Article in English | MEDLINE | ID: mdl-35697332

ABSTRACT

BACKGROUND & AIMS: Nucleos(t)ide reverse transcriptase inhibitors do not completely suppress HBV DNA in chronic HBV infection (cHBV). Vebicorvir (VBR) is an investigational core inhibitor that interferes with multiple aspects of HBV replication. This phase II trial evaluated the safety and efficacy of VBR in combination with entecavir (ETV) in treatment-naïve patients with cHBV. METHODS: HBeAg-positive, treatment-naïve patients without cirrhosis were randomised 1:1 in a double-blind manner to once-daily VBR 300 mg+ETV 0.5 mg or placebo (PBO)+ETV 0.5 mg for 24 weeks. The primary endpoint was change in mean log10 HBV DNA from Baseline to Week 12 and 24. RESULTS: All patients in both treatment groups (PBO+ETV: 12/12; VBR+ETV: 13/13) completed the study. At Week 12, VBR+ETV led to a greater mean (SD) reduction from Baseline in log10 IU/ml HBV DNA (-4.45 [1.03]) vs. PBO+ETV (-3.30 [1.18]; p = 0.0077). At Week 24, VBR+ETV led to a greater reduction from Baseline in log10 IU/ml HBV DNA (-5.33 [1.59]) vs. PBO+ETV (-4.20 [0.98]; p = 0.0084). Greater mean reductions in pregenomic RNA were observed at Week 12 and 24 in patients receiving VBR+ETV vs. PBO+ETV (p <0.0001 and p <0.0001). Changes in viral antigens were similar in both groups. No drug interaction between VBR and ETV was observed. Two patients experienced HBV DNA rebound during treatment, with no resistance breakthrough detected. The safety of VBR+ETV was similar to PBO+ETV. All treatment-emergent adverse events and laboratory abnormalities were Grade 1/2. There were no deaths, serious adverse events, or evidence of drug-induced liver injury. CONCLUSIONS: In this 24-week study, VBR+ETV provided additive antiviral activity over PBO+ETV in treatment-naïve patients with cHBV, with a favourable safety and tolerability profile. CLINICAL TRIAL NUMBER: NCT03577171 LAY SUMMARY: Hepatitis B is a long-lasting viral infection of the liver. Current treatments can suppress hepatitis B virus but do not offer the opportunity of cure, hence, new treatment approaches are required. Herein, we show that the combination of the novel core inhibitor vebicorvir with an existing antiviral (entecavir) in treatment-naïve patients chronically infected with hepatitis B virus demonstrated greater antiviral activity than entecavir alone. Additionally, vebicorvir was safe and well tolerated. Thus, further studies evaluating its potential role in the treatment of chronic hepatitis B are warranted.


Subject(s)
Antiviral Agents , Hepatitis B, Chronic , Humans , Antiviral Agents/adverse effects , DNA, Viral , Guanine/analogs & derivatives , Hepatitis B e Antigens , Hepatitis B virus , Hepatitis B, Chronic/drug therapy , Reverse Transcriptase Inhibitors/therapeutic use , RNA , Treatment Outcome , Drug Therapy, Combination/adverse effects , Double-Blind Method
3.
J Hepatol ; 77(3): 642-652, 2022 09.
Article in English | MEDLINE | ID: mdl-35460726

ABSTRACT

BACKGROUND & AIMS: HBV nucleos(t)ide reverse transcriptase inhibitors (NrtIs) do not completely suppress HBV replication. Previous reports indicate persistent viremia during NrtI treatment despite HBV DNA being undetectable. HBV core inhibitors may enhance viral suppression when combined with NrtIs. This phase II trial (NCT03576066) evaluated the efficacy and safety of the investigational core inhibitor, vebicorvir (VBR), in virologically- suppressed patients on NrtIs. METHODS: Non-cirrhotic, NrtI-suppressed patients with chronic HBV were randomised to VBR 300 mg once daily or matching placebo (PBO) for 24 weeks. Treatment was stratified by hepatitis B e antigen (HBeAg) status. The primary endpoint was change from Baseline in serum HBeAg or hepatitis B surface antigen (HBsAg) after 24 weeks. RESULTS: Of 73 patients enrolled, 47 were HBeAg positive and 26 were HBeAg negative. In HBeAg-positive and -negative patients, there were no differences in the change from Baseline at Week 24 for HBsAg or HBeAg. Using a novel, high-sensitivity assay to detect HBV DNA, a greater proportion of patients with detectable HBV DNA at Baseline achieved undetectable HBV DNA at Week 24 in the VBR+NrtI vs. PBO+NrtI group. In HBeAg-positive patients, a greater change from Baseline in HBV pregenomic (pg)RNA was observed at Week 24 with VBR+NrtI vs. PBO+NrtI. Treatment-emergent adverse events (TEAEs) in VBR+NrtI patients included upper respiratory tract infection, nausea, and pruritus. No serious adverse events, Grade 4 TEAEs, or deaths were reported. CONCLUSIONS: In this 24-week study, VBR+NrtI demonstrated a favourable safety and tolerability profile. While there were no significant changes in viral antigen levels, enhanced viral suppression was demonstrated by greater changes in DNA and pgRNA with the addition of VBR compared to NrtI alone. CLINICAL TRIALS NUMBER: NCT03576066. LAY SUMMARY: Core inhibitors represent a novel approach for the treatment of chronic hepatitis B virus (HBV) infection, with mechanisms of action distinct from existing treatments. In this study, vebicorvir added to existing therapy reduced HBV replication to a greater extent than existing treatment and was generally safe and well tolerated.


Subject(s)
Hepatitis B, Chronic , Antiviral Agents/adverse effects , DNA, Viral , Hepatitis B Surface Antigens , Hepatitis B e Antigens , Hepatitis B virus/genetics , Humans
4.
Xenobiotica ; 51(2): 222-238, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33078965

ABSTRACT

Dilated cardiomyopathy (DCM) is a disease of the myocardium defined by left ventricular enlargement and systolic dysfunction leading to heart failure. Danicamtiv, a new targeted myosin activator designed for the treatment of DCM, was characterised in in vitro and in vivo preclinical studies. Danicamtiv human hepatic clearance was predicted to be 0.5 mL/min/kg from in vitro metabolic stability studies in human hepatocytes. For human, plasma protein binding was moderate with a fraction unbound of 0.16, whole blood-to-plasma partitioning ratio was 0.8, and danicamtiv showed high permeability and no efflux in a Caco-2 cell line. Danicamtiv metabolism pathways in vitro included CYP-mediated amide-cleavage, N-demethylation, as well as isoxazole- and piperidine-ring-opening. Danicamtiv clearance in vivo was low across species with 15.5, 15.3, 1.6, and 5.7 mL/min/kg in mouse, rat, dog, and monkey, respectively. Volume of distribution ranged from 0.24 L/kg in mouse to 1.7 L/kg in rat. Oral bioavailability ranged from 26% in mouse to 108% in dog. Simple allometric scaling prediction of human plasma clearance, volume of distribution, and half-life was 0.64 mL/min/kg, 0.98 L/kg, and 17.7 h, respectively. Danicamtiv preclinical attributes and predicted human pharmacokinetics supported advancement toward clinical development.


Subject(s)
Cardiomyopathy, Dilated/drug therapy , Animals , Biological Availability , Caco-2 Cells , Dogs , Hepatocytes , Humans , Male , Mice , Microsomes, Liver , Myosins , Protein Binding , Rats
5.
Xenobiotica ; 49(6): 718-733, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30044681

ABSTRACT

Mavacamten is a small molecule modulator of cardiac myosin designed as an orally administered drug for the treatment of patients with hypertrophic cardiomyopathy. The current study objectives were to assess the preclinical pharmacokinetics of mavacamten for the prediction of human dosing and to establish the potential need for clinical pharmacokinetic studies characterizing drug-drug interaction potential. Mavacamten does not inhibit CYP enzymes, but at high concentrations relative to anticipated therapeutic concentrations induces CYP2B6 and CYP3A4 enzymes in vitro. Mavacamten showed high permeability and low efflux transport across Caco-2 cell membranes. In human hepatocytes, mavacamten was not a substrate for drug transporters OATP, OCT and NTCP. Mavacamten was determined to have minimal drug-drug interaction risk. In vitro mavacamten metabolite profiles included phase I- and phase II-mediated metabolism cross-species. Major pathways included aromatic hydroxylation (M1), aliphatic hydroxylation (M2); N-dealkylation (M6), and glucuronidation of the M1-metabolite (M4). Reaction phenotyping revealed CYPs 2C19 and 3A4/3A5 predominating. Mavacamten demonstrated low clearance, high volume of distribution, long terminal elimination half-life and excellent oral bioavailability cross-species. Simple four-species allometric scaling led to predicted plasma clearance, volume of distribution and half-life of 0.51 mL/min/kg, 9.5 L/kg and 9 days, respectively, in human.


Subject(s)
Benzylamines/pharmacokinetics , Uracil/analogs & derivatives , Animals , Benzylamines/chemistry , Benzylamines/metabolism , Caco-2 Cells , Cardiac Myosins/metabolism , Cardiomyopathy, Hypertrophic/drug therapy , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Dogs , Drug Interactions , Hepatocytes/metabolism , Humans , Macaca fascicularis , Male , Metabolic Clearance Rate , Mice, Inbred ICR , Microsomes, Liver , Rats, Sprague-Dawley , Uracil/chemistry , Uracil/metabolism , Uracil/pharmacokinetics
6.
PLoS One ; 11(12): e0168407, 2016.
Article in English | MEDLINE | ID: mdl-27973580

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is an inherited disease of the heart muscle characterized by otherwise unexplained thickening of the left ventricle. Left ventricular outflow tract (LVOT) obstruction is present in approximately two-thirds of patients and substantially increases the risk of disease complications. Invasive treatment with septal myectomy or alcohol septal ablation can improve symptoms and functional status, but currently available drugs for reducing obstruction have pleiotropic effects and variable therapeutic responses. New medical treatments with more targeted pharmacology are needed, but the lack of preclinical animal models for HCM with LVOT obstruction has limited their development. HCM is a common cause of heart failure in cats, and a subset exhibit systolic anterior motion of the mitral valve leading to LVOT obstruction. MYK-461 is a recently-described, mechanistically novel small molecule that acts at the sarcomere to specifically inhibit contractility that has been proposed as a treatment for HCM. Here, we use MYK-461 to test whether direct reduction in contractility is sufficient to relieve LVOT obstruction in feline HCM. We evaluated mixed-breed cats in a research colony derived from a Maine Coon/mixed-breed founder with naturally-occurring HCM. By echocardiography, we identified five cats that developed systolic anterior motion of the mitral valve and LVOT obstruction both at rest and under anesthesia when provoked with an adrenergic agonist. An IV MYK-461 infusion and echocardiography protocol was developed to serially assess contractility and LVOT gradient at multiple MYK-461 concentrations. Treatment with MYK-461 reduced contractility, eliminated systolic anterior motion of the mitral valve and relieved LVOT pressure gradients in an exposure-dependent manner. Our findings provide proof of principle that acute reduction in contractility with MYK-461 is sufficient to relieve LVOT obstruction. Further, these studies suggest that feline HCM will be a valuable translational model for the study of disease pathology, particularly LVOT obstruction.


Subject(s)
Benzylamines/pharmacokinetics , Cardiomyopathy, Hypertrophic/physiopathology , Heart Ventricles/physiopathology , Sarcomeres/pathology , Uracil/analogs & derivatives , Animals , Benzylamines/pharmacology , Cardiac Surgical Procedures , Cats , Disease Models, Animal , Hemodynamics , Male , Muscle Contraction , Systole , Uracil/pharmacokinetics , Uracil/pharmacology
7.
Science ; 351(6273): 617-21, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26912705

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is an inherited disease of heart muscle that can be caused by mutations in sarcomere proteins. Clinical diagnosis depends on an abnormal thickening of the heart, but the earliest signs of disease are hyperdynamic contraction and impaired relaxation. Whereas some in vitro studies of power generation by mutant and wild-type sarcomere proteins are consistent with mutant sarcomeres exhibiting enhanced contractile power, others are not. We identified a small molecule, MYK-461, that reduces contractility by decreasing the adenosine triphosphatase activity of the cardiac myosin heavy chain. Here we demonstrate that early, chronic administration of MYK-461 suppresses the development of ventricular hypertrophy, cardiomyocyte disarray, and myocardial fibrosis and attenuates hypertrophic and profibrotic gene expression in mice harboring heterozygous human mutations in the myosin heavy chain. These data indicate that hyperdynamic contraction is essential for HCM pathobiology and that inhibitors of sarcomere contraction may be a valuable therapeutic approach for HCM.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , Benzylamines/administration & dosage , Cardiac Myosins/antagonists & inhibitors , Cardiomyopathy, Hypertrophic, Familial/drug therapy , Myocardial Contraction/drug effects , Myosin Heavy Chains/antagonists & inhibitors , Sarcomeres/drug effects , Uracil/analogs & derivatives , Animals , Benzylamines/chemistry , Cardiac Myosins/genetics , Cardiomyopathy, Hypertrophic, Familial/pathology , Cardiomyopathy, Hypertrophic, Familial/physiopathology , Cells, Cultured , Disease Models, Animal , Fibrosis , Heart Ventricles/drug effects , Heart Ventricles/pathology , Heterozygote , Humans , Male , Mice , Mice, Inbred Strains , Mutation , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myosin Heavy Chains/genetics , Rats , Uracil/administration & dosage , Uracil/chemistry
8.
ACS Med Chem Lett ; 4(1): 113-7, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-24900571

ABSTRACT

Potent imidazopyridine-based inhibitors of fatty acid synthase (FASN) are described. The compounds are shown to have antiviral (HCV replicon) activities that track with their biochemical activities. The most potent analogue (compound 19) also inhibits rat FASN and inhibits de novo palmitate synthesis in vitro (cell-based) as well as in vivo.

9.
ACS Med Chem Lett ; 3(3): 203-6, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-24900456

ABSTRACT

LFA-1/ICAM-1 interaction is essential in support of inflammatory and specific T-cell regulated immune responses by mediating cell adhesion, leukocyte extravasation, migration, antigen presentation, formation of immunological synapse, and augmentation of T-cell receptor signaling. The increase of ICAM-1 expression levels in conjunctival epithelial cells and acinar cells was observed in animal models and patients diagnosed with dry eye. Therefore, it has been hypothesized that small molecule LFA-1/ICAM-1 antagonists could be an effective topical treatment for dry eye. In this letter, we describe the discovery of a potent tetrahydroisoquinoline (THIQ)-derived LFA-1/ICAM-1 antagonist (SAR 1118) and its development as an ophthalmic solution for treating dry eye.

10.
Bioorg Med Chem Lett ; 21(1): 307-10, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21109434

ABSTRACT

This letter describes the structure-activity relationship (SAR) of the 'right-wing' α-amino acid residue of potent tetrahydroisoquinoline (THIQ)-derived LFA-1/ICAM-1 antagonists. Novel (S)-substituted heteroaryl-bearing α-amino acids have been identified as replacements of the 'right-wing' (S)-2,3-diaminopropanoic acid (DAP) moiety. Improvement of potency in the Hut-78 assay in the presence of 10% human serum has also been achieved.


Subject(s)
Amino Acids/chemistry , Intercellular Adhesion Molecule-1/chemistry , Lymphocyte Function-Associated Antigen-1/chemistry , Tetrahydroisoquinolines/chemistry , Animals , Intercellular Adhesion Molecule-1/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Male , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Tetrahydroisoquinolines/chemical synthesis , Tetrahydroisoquinolines/pharmacokinetics , beta-Alanine/analogs & derivatives , beta-Alanine/chemistry
11.
Bioorg Med Chem Lett ; 20(17): 5269-73, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20655213

ABSTRACT

This letter describes the discovery of a novel series of tetrahydroisoquinoline (THIQ)-derived small molecules that potently inhibit both human T-cell migration and super-antigen induced T-cell activation through disruption of the binding of integrin LFA-1 to its receptor, ICAM-1. In addition to excellent in vitro potency, 6q shows good pharmacokinetic properties and its ethyl ester (6t) demonstrates good oral bioavailability in both mouse and rat. Either intravenous administration of 6q or oral administration of its ethyl ester (6t) produced a significant reduction of neutrophil migration in a thioglycollate-induced murine peritonitis model.


Subject(s)
Intercellular Adhesion Molecule-1/drug effects , Lymphocyte Function-Associated Antigen-1/drug effects , Tetrahydroisoquinolines/pharmacology , Animals , Biological Availability , Drug Discovery , Humans , Tetrahydroisoquinolines/administration & dosage , Tetrahydroisoquinolines/pharmacokinetics
12.
Cancer Chemother Pharmacol ; 65(4): 707-17, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19649632

ABSTRACT

PURPOSE: The Aurora family of serine/threonine kinases (Aurora-A, Aurora-B, and Aurora-C) plays a key role in cells orderly progression through mitosis. Elevated expression levels of Aurora kinases have been detected in a high percentage of melanoma, colon, breast, ovarian, gastric, and pancreatic tumors. We characterized the biological and pharmacological properties of SNS-314, an ATP-competitive, selective, and potent inhibitor of Aurora kinases. METHODS: We studied the biochemical potency and selectivity of SNS-314 to inhibit Aurora kinases A, B, and C. The inhibition of cellular proliferation induced by SNS-314 was evaluated in a broad range of tumor cell lines and correlated to inhibition of histone H3 phosphorylation, inhibition of cell-cycle progression, increase in nuclear content and cell size, loss of viability, and induction of apoptosis. The dose and administration schedule of SNS-314 was optimized for in vivo efficacy in mouse xenograft models of human cancer. RESULTS: In the HCT116 human colon cancer xenograft model, administration of 50 and 100 mg/kg SNS-314 led to dose-dependent inhibition of histone H3 phosphorylation for at least 10 h, indicating effective Aurora-B inhibition in vivo. HCT116 tumors from animals treated with SNS-314 showed potent and sustained responses including reduction of phosphorylated histone H3 levels, increased caspase-3 and appearance of increased nuclear size. The compound showed significant tumor growth inhibition in a dose-dependent manner under a variety of dosing schedules including weekly, bi-weekly, and 5 days on/9 days off. CONCLUSIONS: SNS-314 is a potent small-molecule inhibitor of Aurora kinases developed as a novel anti-cancer therapeutic agent for the treatment of diverse human malignancies.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/prevention & control , Phenylurea Compounds/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Thiazoles/pharmacology , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Aurora Kinase A , Aurora Kinase B , Aurora Kinase C , Aurora Kinases , Caspase 3/metabolism , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Female , HCT116 Cells , HT29 Cells , HeLa Cells , Histones/metabolism , Humans , Inhibitory Concentration 50 , Mice , Mice, Nude , Molecular Structure , Neoplasms/metabolism , Neoplasms/pathology , Phenylurea Compounds/chemistry , Phosphorylation/drug effects , Protein Serine-Threonine Kinases/metabolism , Thiazoles/chemistry , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
13.
Drug Metab Dispos ; 37(3): 594-601, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19074528

ABSTRACT

(+)-1,4-Dihydro-7-(trans-3-methoxy-4-methylamino-1-pyrrolidinyl)-4-oxo-1-(2-thiazolyl)-1,8-naphthyridine-3-carboxylic acid (voreloxin; formerly SNS-595 or AG-7352) is currently under investigation for the treatment of platinum-resistant ovarian cancer and acute myeloid leukemia. In vitro voreloxin undergoes minimal cytochrome P450 (P450) and UDP glucuronosyltransferase (UGT)-mediated metabolism, and in vivo excretion of unchanged voreloxin as the major species is consistent with the slow rate of metabolism observed in vitro. The objective of the present study was to examine the cross-species metabolic profile of voreloxin and to identify and characterize the metabolites formed in rats. We also investigated baculovirus-expressed human P450s and UGTs to determine which isoforms participated in voreloxin metabolism. Incubations using human, monkey, and rat liver microsomes showed monkey and rat metabolism is similar to human. Voreloxin and metabolites collected from plasma, bile, and urine from rats administered radiolabeled voreloxin were separated by high-performance liquid chromatography, and their structures were elucidated by liquid chromatography/tandem mass spectrometry. Activity of metabolites was determined with authentic reference standards in cell-based cytotoxicity assays. The proposed structures of metabolites suggest that metabolic pathways for voreloxin include glucuronide conjugation, oxidation, N-dealkylation, and O-dealkylation.


Subject(s)
DNA Damage , DNA Replication/drug effects , Naphthyridines/metabolism , Thiazoles/metabolism , Animals , Area Under Curve , Bile/metabolism , Chromatography, High Pressure Liquid , Male , Naphthyridines/pharmacokinetics , Naphthyridines/pharmacology , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Thiazoles/pharmacokinetics , Thiazoles/pharmacology
14.
Bioorg Med Chem Lett ; 18(20): 5648-52, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18793847

ABSTRACT

A series of 2-amino-pyrazolopyridines was designed and synthesized as Polo-like kinase (Plk) inhibitors based on a low micromolar hit. The SAR was developed to provide compounds exhibiting low nanomolar inhibitory activity of Plk1; the phenotype of treated cells is consistent with Plk1 inhibition. A co-crystal structure of one of these compounds with zPlk1 confirms an ATP-competitive binding mode.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Chemistry, Pharmaceutical/methods , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pyrazoles/chemical synthesis , Pyridines/chemical synthesis , Adenosine Triphosphate/chemistry , Amino Acid Motifs , Cell Cycle , Crystallography, X-Ray , Drug Design , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Conformation , Phenotype , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Structure-Activity Relationship , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...