Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
AJNR Am J Neuroradiol ; 37(2): 360-6, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26405083

ABSTRACT

BACKGROUND AND PURPOSE: (1)H-MRS provides a noninvasive way to study fetal brain maturation at the biochemical level. The purpose of this study was to characterize in vivo metabolic maturation in the healthy fetal brain during the second and third trimester using (1)H-MRS. MATERIALS AND METHODS: Healthy pregnant volunteers between 18 and 40 weeks gestational age underwent single voxel (1)H-MRS. MR spectra were retrospectively corrected for motion-induced artifacts and quantified using LCModel. Linear regression was used to examine the relationship between absolute metabolite concentrations and ratios of total NAA, Cr, and Cho to total Cho and total Cr and gestational age. RESULTS: Two hundred four spectra were acquired from 129 pregnant women at mean gestational age of 30.63 ± 6 weeks. Total Cho remained relatively stable across the gestational age (r(2) = 0.04, P = .01). Both total Cr (r(2) = 0.60, P < .0001) as well as total NAA and total NAA to total Cho (r(2) = 0.58, P < .0001) increased significantly between 18 and 40 weeks, whereas total NAA to total Cr exhibited a slower increase (r(2) = 0.12, P < .0001). Total Cr to total Cho also increased (r(2) = 0.53, P < .0001), whereas total Cho to total Cr decreased (r(2) = 0.52, P < .0001) with gestational age. The cohort was also stratified into those that underwent MRS in the second and third trimesters and analyzed separately. CONCLUSIONS: We characterized metabolic changes in the normal fetal brain during the second and third trimesters of pregnancy and derived normative metabolic indices. These reference values can be used to study metabolic maturation of the fetal brain in vivo.


Subject(s)
Brain/embryology , Brain/metabolism , Fetal Development , Fetus/metabolism , Proton Magnetic Resonance Spectroscopy/methods , Adult , Aspartic Acid/analogs & derivatives , Aspartic Acid/analysis , Choline/analysis , Choline/metabolism , Creatine/analysis , Creatine/metabolism , Female , Gestational Age , Humans , Pregnancy , Reference Values
2.
AJNR Am J Neuroradiol ; 35(8): 1593-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24651820

ABSTRACT

BACKGROUND AND PURPOSE: Brain injury is a major complication in neonates with complex congenital heart disease. Preliminary evidence suggests that fetuses with congenital heart disease are at greater risk for brain abnormalities. However, the nature and frequency of these brain abnormalities detected by conventional fetal MR imaging has not been examined prospectively. Our primary objective was to determine the prevalence and spectrum of brain abnormalities detected on conventional clinical MR imaging in fetuses with complex congenital heart disease and, second, to compare the congenital heart disease cohort with a control group of fetuses from healthy pregnancies. MATERIALS AND METHODS: We prospectively recruited pregnant women with a confirmed fetal congenital heart disease diagnosis and healthy volunteers with normal fetal echocardiogram findings who underwent a fetal MR imaging between 18 and 39 weeks gestational age. RESULTS: A total of 338 fetuses (194 controls; 144 with congenital heart disease) were studied at a mean gestational age of 30.61 ± 4.67 weeks. Brain abnormalities were present in 23% of the congenital heart disease group compared with 1.5% in the control group (P < .001). The most common abnormalities in the congenital heart disease group were mild unilateral ventriculomegaly in 12/33 (36.4%) and increased extra-axial spaces in 10/33 (30.3%). Subgroup analyses comparing the type and frequency of brain abnormalities based on cardiac physiology did not reveal significant associations, suggesting that the brain abnormalities were not limited to those with the most severe congenital heart disease. CONCLUSIONS: This is the first large prospective study reporting conventional MR imaging findings in fetuses with congenital heart disease. Our results suggest that brain abnormalities are prevalent but relatively mild antenatally in fetuses with congenital heart disease. The long-term predictive value of these findings awaits further study.


Subject(s)
Brain/abnormalities , Fetal Diseases/pathology , Heart Defects, Congenital/complications , Adult , Female , Fetal Diseases/diagnosis , Fetus , Humans , Infant, Newborn , Pregnancy , Prevalence , Prospective Studies
3.
AJNR Am J Neuroradiol ; 30(7): 1380-6, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19369608

ABSTRACT

BACKGROUND AND PURPOSE: Several studies suggest that grey matter involvement may play a role in multiple sclerosis (MS) pathology. Diffusion tensor imaging (DTI) at 3T was used to investigate the presence of damage to the normal-appearing thalamus in MS and its relationship with disability. MATERIALS AND METHODS: Twenty-four patients with relapsing-remitting (RR, n = 13, age = 41.7 +/- 6.1, Expanded Disability Status Scale [EDSS] score = 2.2 +/- 1.2) and secondary-progressive (n = 11, age = 46.9 +/- 9.6, EDSS = 5.9 +/- 1.0) MS and 24 age- and sex-matched healthy volunteers were studied. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in regions of interest of normal-appearing thalamus. We examined group differences in MD and FA and correlations between DTI-derived metrics and clinical or imaging measures of disease. RESULTS: Patients with MS had higher thalamic FA (P < .0001) and MD (P = .035) than volunteers. MD values correlated with the Paced Auditory Serial Addition Task (r = -0.43, P = .034) and motor EDSS (r = 0.47, P = .021) scores. In patients with RRMS, MD values correlated with global EDSS (r = 0.75, P = .003) and motor EDSS (r = 0.68, P = .010). Correlations were found between MD values and T1 and T2 lesion load (r = 0.58, P < .05) and brain parenchymal fraction (r = -0.46, P < .05). CONCLUSIONS: DTI was able to detect abnormalities in normal-appearing thalamus of patients with MS. The strength of association between thalamic DTI measures and functional impairment was in the same range as those seen with standard MR imaging disease measures. The assessment of the integrity of the thalamus with DTI is a promising metric as a marker of disease for future studies.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Movement Disorders/diagnosis , Movement Disorders/etiology , Multiple Sclerosis/classification , Multiple Sclerosis/diagnosis , Neurons/pathology , Adult , Disability Evaluation , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity , Thalamus
SELECTION OF CITATIONS
SEARCH DETAIL
...