Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Immunol ; 180: 128-135, 2017 07.
Article in English | MEDLINE | ID: mdl-28506921

ABSTRACT

The etiology of multiple sclerosis (MS) remains elusive. Among the possible causes, the increase of anti-Neu5Gc antibodies during EBV primo-infection of Infectious mononucleosis (IMN) may damage the integrity of the blood-brain barrier facilitating the transfer of EBV-infected B cells and anti-EBV T cell clones in the brain. We investigated the change in titers of anti-Neu5Gc and anti-α1,3 Galactose antibodies in 49 IMN, in 76 MS, and 73 clinically isolated syndrome (CIS) patients, as well as age/gender-matched healthy individuals. Anti-Gal and anti-Neu5Gc are significantly increased during IMN (p=0.02 and p<1.10-4 respectively), but not in acute CMV primo-infection. We show that, whereas there was no change in anti-Neu5Gc in MS/CIS, the two populations exhibit a significant decrease in anti-Gal (combined p=2.7.10-3), in contrast with patients with non-MS/CIS central nervous system pathologies. Since anti-Gal result from an immunization against α1,3 Gal, lacking in humans but produced in the gut, our data suggest that CIS and MS patients have an altered microbiota or an altered response to this microbiotic epitope.


Subject(s)
Demyelinating Diseases/blood , Demyelinating Diseases/immunology , Galactose/immunology , Immunoglobulin G/blood , Adolescent , Adult , Aged , Child , Child, Preschool , Epstein-Barr Virus Infections/blood , Epstein-Barr Virus Infections/immunology , Female , Humans , Male , Middle Aged , Pregnancy , Young Adult
2.
J Evol Biol ; 29(8): 1593-601, 2016 08.
Article in English | MEDLINE | ID: mdl-27177256

ABSTRACT

In the context of global changes, the long-term viability of populations of endangered ectotherms may depend on their adaptive potential and ability to cope with temperature variations. We measured responses of Atlantic salmon embryos from four populations to temperature variations and used a QST -FST approach to study the adaptive divergence among these populations. Embryos were reared under two experimental conditions: a low temperature regime at 4 °C until eyed-stage and 10 °C until the end of embryonic development and a high temperature regime with a constant temperature of 10 °C throughout embryonic development. Significant variations among populations and population × temperature interactions were observed for embryo survival, incubation time and length. QST was higher than FST in all but one comparison suggesting an important effect of divergent selection. QST was also higher under the high-temperature treatment than at low temperature for length and survival due to a higher variance among populations under the stressful warmer treatment. Interestingly, heritability was lower for survival under high temperature in relation to a lower additive genetic variance under that treatment. Overall, these results reveal an adaptive divergence in thermal plasticity in embryonic life stages of Atlantic salmon suggesting that salmon populations may differentially respond to temperature variations induced by climate change. These results also suggest that changes in temperature may alter not only the adaptive potential of natural populations but also the selection regimes among them.


Subject(s)
Salmo salar/embryology , Temperature , Animals , Climate Change , Cold Temperature , Embryo, Nonmammalian , Embryonic Development , Hot Temperature
3.
J Evol Biol ; 28(12): 2248-63, 2015 12.
Article in English | MEDLINE | ID: mdl-26348652

ABSTRACT

Ecologically based divergent selection is a factor that could drive reproductive isolation even in the presence of gene flow. Population pairs arrayed along a continuum of divergence provide a good opportunity to address this issue. Here, we used a combination of mating trials, experimental crosses and population genetic analyses to investigate the evolution of reproductive isolation between two closely related species of lampreys with distinct life histories. We used microsatellite markers to genotype over 1000 individuals of the migratory parasitic river lamprey (Lampetra fluviatilis) and freshwater-resident nonparasitic brook lamprey (Lampetra planeri) distributed in 10 sympatric and parapatric population pairs in France. Mating trials, parentage analyses and artificial fertilizations demonstrated a low level of reproductive isolation between species even though size-assortative mating may contribute to isolation. Most parapatric population pairs were strongly differentiated due to the joint effects of geographic distance and barriers to migration. In contrast, we found variable levels of gene flow between sympatric populations ranging from panmixia to moderate differentiation, which indicates a gradient of divergence with some population pairs that may correspond to alternative morphs or ecotypes of a single species and others that remain partially isolated. Ecologically based divergent selection may explain these variable levels of divergence among sympatric population pairs, but incomplete genome swamping following secondary contact could have also played a role. Overall, this study illustrates how highly differentiated phenotypes can be maintained despite high levels of gene flow that limit the progress towards speciation.


Subject(s)
Gene Flow , Lampreys/physiology , Reproduction , Animals , Bayes Theorem , Cluster Analysis , Genetic Markers , Lampreys/classification , Lampreys/genetics , Microsatellite Repeats/genetics , Species Specificity
4.
J Evol Biol ; 25(12): 2596-606, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23107024

ABSTRACT

Understanding whether populations can adapt to new environmental conditions is a major issue in conservation and evolutionary biology. Aquatic organisms are increasingly exposed to environmental changes linked with human activities in river catchments. For instance, the clogging of bottom substratum by fine sediments is observed in many rivers and usually leads to a decrease in dissolved oxygen concentrations in gravel beds. Such hypoxic stress can alter the development and even be lethal for Atlantic salmon (Salmo salar) embryos that spend their early life into gravel beds. In this study, we used a common garden experiment to compare the responses to hypoxic stress of four genetically differentiated and environmentally contrasted populations. We used factorial crossing designs to measure additive genetic variation of early life-history traits in each population. Embryos were reared under normoxic and hypoxic conditions, and we measured their survival, incubation time and length at the end of embryonic development. Under hypoxic conditions, embryos had a lower survival and hatched later than in normoxic conditions. We found different hypoxia reaction norms among populations, but almost no population effect in both treatments. We also detected significant sire × treatment interactions in most populations and a tendency for heritability values to be lower under stressful conditions. Overall, these results reveal a high degree of phenotypic plasticity in salmon populations that nevertheless differ in their adaptive potential to hypoxia given the distinct reaction norms observed between and within populations.


Subject(s)
Genetic Variation , Hypoxia/physiopathology , Salmo salar/physiology , Stress, Physiological , Animals , Atlantic Ocean , Biological Evolution , Female , Male , Quantitative Trait, Heritable
6.
J Evol Biol ; 19(4): 1071-82, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16780508

ABSTRACT

Detecting the action of selection in natural populations can be achieved using the QST-FST comparison that relies on the estimation of FST with neutral markers, and QST using quantitative traits potentially under selection. QST higher than FST suggests the action of directional selection and thus potential local adaptation. In this article, we apply the QST-FST comparison to four populations of the hermaphroditic freshwater snail Radix balthica located in a floodplain habitat. In contrast to most studies published so far, we did not detect evidence of directional selection for local optima for any of the traits we measured: QST calculated using three different methods was never higher than FST. A strong inbreeding depression was also detected, indicating that outcrossing is probably predominant over selfing in the studied populations. Our results suggest that in this floodplain habitat, local adaptation of R. balthica populations may be hindered by genetic drift, and possibly altered by uneven gene flow linked to flood frequency.


Subject(s)
Biological Evolution , Quantitative Trait Loci , Snails/genetics , Animals , Fresh Water , Inbreeding
8.
Mol Ecol ; 14(8): 2611-20, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15969739

ABSTRACT

The identification of genetically homogeneous groups of individuals is a long standing issue in population genetics. A recent Bayesian algorithm implemented in the software STRUCTURE allows the identification of such groups. However, the ability of this algorithm to detect the true number of clusters (K) in a sample of individuals when patterns of dispersal among populations are not homogeneous has not been tested. The goal of this study is to carry out such tests, using various dispersal scenarios from data generated with an individual-based model. We found that in most cases the estimated 'log probability of data' does not provide a correct estimation of the number of clusters, K. However, using an ad hoc statistic DeltaK based on the rate of change in the log probability of data between successive K values, we found that STRUCTURE accurately detects the uppermost hierarchical level of structure for the scenarios we tested. As might be expected, the results are sensitive to the type of genetic marker used (AFLP vs. microsatellite), the number of loci scored, the number of populations sampled, and the number of individuals typed in each sample.


Subject(s)
Genetics, Population , Models, Genetic , Software , Bayes Theorem , Computer Simulation , Gene Frequency , Microsatellite Repeats/genetics , Polymorphism, Restriction Fragment Length , Population Dynamics , Sample Size
SELECTION OF CITATIONS
SEARCH DETAIL
...