Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Sci Adv ; 10(7): eadj2445, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38354234

ABSTRACT

The majority of clinically approved drugs target proteins that are secreted or cell surface bound. However, further advances in this area have been hindered by the challenging nature of receptor deorphanization, as there are still many secreted and cell-bound proteins with unknown binding partners. Here, we developed an advanced screening platform that combines CRISPR-CAS9 guide-mediated gene activation (CRISPRa) and high-avidity bead-based selection. The CRISPRa platform incorporates serial enrichment and flow cytometry-based monitoring, resulting in substantially improved screening sensitivity for well-known yet weak interactions of the checkpoint inhibitor family. Our approach has successfully revealed that siglec-4 exerts regulatory control over T cell activation through a low affinity trans-interaction with the costimulatory receptor 4-1BB. Our highly efficient screening platform holds great promise for identifying extracellular interactions of uncharacterized receptor-ligand partners, which is essential to develop next-generation therapeutics, including additional immune checkpoint inhibitors.


Subject(s)
CRISPR-Cas Systems , Membrane Proteins , Ligands , Membrane Proteins/genetics , Transcriptional Activation
2.
PLoS Genet ; 19(9): e1010940, 2023 09.
Article in English | MEDLINE | ID: mdl-37713444

ABSTRACT

The unknown pathogenicity of a significant number of variants found in cancer-related genes is attributed to limited epidemiological data, resulting in their classification as variant of uncertain significance (VUS). To date, Breast Cancer gene-2 (BRCA2) has the highest number of VUSs, which has necessitated the development of several robust functional assays to determine their functional significance. Here we report the use of a humanized-mouse embryonic stem cell (mESC) line expressing a single copy of the human BRCA2 for a CRISPR-Cas9-based high-throughput functional assay. As a proof-of-principle, we have saturated 11 codons encoded by BRCA2 exons 3, 18, 19 and all possible single-nucleotide variants in exon 13 and multiplexed these variants for their functional categorization. Specifically, we used a pool of 180-mer single-stranded donor DNA to generate all possible combination of variants. Using a high throughput sequencing-based approach, we show a significant drop in the frequency of non-functional variants, whereas functional variants are enriched in the pool of the cells. We further demonstrate the response of these variants to the DNA-damaging agents, cisplatin and olaparib, allowing us to use cellular survival and drug response as parameters for variant classification. Using this approach, we have categorized 599 BRCA2 variants including 93-single nucleotide variants (SNVs) across the 11 codons, of which 28 are reported in ClinVar. We also functionally categorized 252 SNVs from exon 13 into 188 functional and 60 non-functional variants, demonstrating that saturation genome editing (SGE) coupled with drug sensitivity assays can enhance functional annotation of BRCA2 VUS.


Subject(s)
Breast Neoplasms , Gene Editing , Animals , Humans , Mice , Female , Virulence , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Exons/genetics , Codon , Nucleotides , Breast Neoplasms/genetics , Genetic Predisposition to Disease , BRCA1 Protein/genetics
3.
Cell ; 186(17): 3686-3705.e32, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37595566

ABSTRACT

Mucosal-associated invariant T (MAIT) cells represent an abundant innate-like T cell subtype in the human liver. MAIT cells are assigned crucial roles in regulating immunity and inflammation, yet their role in liver cancer remains elusive. Here, we present a MAIT cell-centered profiling of hepatocellular carcinoma (HCC) using scRNA-seq, flow cytometry, and co-detection by indexing (CODEX) imaging of paired patient samples. These analyses highlight the heterogeneity and dysfunctionality of MAIT cells in HCC and their defective capacity to infiltrate liver tumors. Machine-learning tools were used to dissect the spatial cellular interaction network within the MAIT cell neighborhood. Co-localization in the adjacent liver and interaction between niche-occupying CSF1R+PD-L1+ tumor-associated macrophages (TAMs) and MAIT cells was identified as a key regulatory element of MAIT cell dysfunction. Perturbation of this cell-cell interaction in ex vivo co-culture studies using patient samples and murine models reinvigorated MAIT cell cytotoxicity. These studies suggest that aPD-1/aPD-L1 therapies target MAIT cells in HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mucosal-Associated Invariant T Cells , Animals , Humans , Mice , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/pathology , Tumor-Associated Macrophages
4.
J Biol Chem ; 299(8): 104948, 2023 08.
Article in English | MEDLINE | ID: mdl-37354974

ABSTRACT

Regulated protein degradation in eukaryotes is performed by the 26S proteasome, which contains a 19-subunit regulatory particle (RP) that binds, processes, and translocates substrates to a 28-subunit hollow core particle (CP) where proteolysis occurs. In addition to its intrinsic subunits, myriad proteins interact with the proteasome transiently, including factors that assist and/or regulate its degradative activities. Efforts to identify proteasome-interacting components and/or to solve its structure have relied on over-expression of a tagged plasmid, establishing stable cell lines, or laborious purification protocols to isolate native proteasomes from cells. Here, we describe an engineered human cell line, derived from colon cancer HCT116 cells, with a biotin handle on the RP subunit hRpn1/PSMD2 (proteasome 26S subunit, non-ATPase 2) for purification of 26S proteasomes. A 75-residue sequence from Propionibacterium shermanii that is biotinylated in mammalian cells was added following a tobacco etch virus protease cut site at the C terminus of hRpn1. We tested and found that 26S proteasomes can be isolated from this modified HCT116 cell line by using a simple purification protocol. More specifically, biotinylated proteasomes were purified from the cell lysates by using neutravidin agarose resin and released from the resin following incubation with tobacco etch virus protease. The purified proteasomes had equivalent activity in degrading a model ubiquitinated substrate, namely ubiquitinated p53, compared to commercially available bovine proteasomes that were purified by fractionation. In conclusion, advantages of this approach to obtain 26S proteasomes over others is the simple purification protocol and that all cellular proteins, including the tagged hRpn1 subunit, remain at endogenous stoichiometry.


Subject(s)
Cytological Techniques , Proteasome Endopeptidase Complex , Animals , Cattle , Humans , Cell Line , Cytoplasm/metabolism , Mammals/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Ubiquitin/metabolism , Cytological Techniques/methods
5.
Nat Commun ; 12(1): 7318, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34916494

ABSTRACT

Proteasome substrate receptor hRpn13 is a promising anti-cancer target. By integrated in silico and biophysical screening, we identified a chemical scaffold that binds hRpn13 with non-covalent interactions that mimic the proteasome and a weak electrophile for Michael addition. hRpn13 Pru domain binds proteasomes and ubiquitin whereas its DEUBAD domain binds deubiquitinating enzyme UCHL5. NMR revealed lead compound XL5 to interdigitate into a hydrophobic pocket created by lateral movement of a Pru ß-hairpin with an exposed end for Proteolysis Targeting Chimeras (PROTACs). Implementing XL5-PROTACs as chemical probes identified a DEUBAD-lacking hRpn13 species (hRpn13Pru) present naturally with cell type-dependent abundance. XL5-PROTACs preferentially target hRpn13Pru, causing its ubiquitination. Gene-editing and rescue experiments established hRpn13 requirement for XL5-PROTAC-triggered apoptosis. These data establish hRpn13 as an anti-cancer target for multiple myeloma and introduce an hRpn13-targeting scaffold that can be optimized for preclinical trials against hRpn13Pru-producing cancer types.


Subject(s)
Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Multiple Myeloma/metabolism , Ubiquitination , Apoptosis , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/genetics , Multiple Myeloma/genetics , Proteasome Endopeptidase Complex/metabolism , Transcription Factors/metabolism , Transcriptional Activation , Ubiquitin/metabolism
6.
Cancer Immunol Res ; 9(9): 1024-1034, 2021 09.
Article in English | MEDLINE | ID: mdl-34193462

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are MR1-restricted innate-like T cells that recognize non-peptide antigens including riboflavin derivates. Although in vitro-activated MAIT cells show antitumor activity, the in vivo role of MAIT cells in cancer is still unclear. Here, we have shown that MAIT cells have antitumor function in vivo when activated by a combination of the synthetic riboflavin synthesis pathway-derived antigen 5-OP-RU [5-(2-oxopropylideneamino)-6-D-ribitylaminouracil] and the Toll-like receptor 9 (TLR9) agonist CpG. Coadministration of 5-OP-RU and CpG induced strong systemic in vivo expansion and activation of MAIT cells with high CD69 expression, pronounced effector memory phenotype, and upregulated levels of effector molecules including IFNγ, granzyme B, and perforin. Activated and expanded MAITs induced a potent and broad antitumor immune response in murine models of liver metastasis and hepatocellular carcinoma, lung metastasis, and subcutaneous tumors in two different mouse strains. Such tumor inhibition was absent in MAIT-deficient Mr1 -/- mice. CRISPR/Cas9-mediated MR1 knockout in tumor cells did not affect efficacy of this MAIT-directed immunotherapy, pointing toward an indirect mechanism of action. Our findings suggest that MAIT cells are an attractive target for cancer immunotherapy.See related Spotlight by Lantz, p. 996.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Lymphocyte Activation/immunology , Minor Histocompatibility Antigens/metabolism , Mucosal-Associated Invariant T Cells/drug effects , Neoplasms/drug therapy , Animals , Antigens, CD , Antigens, Differentiation, T-Lymphocyte , CRISPR-Cas Systems , Cell Line, Tumor , Female , Histocompatibility Antigens Class I/genetics , Humans , Lectins, C-Type , Male , Mice , Minor Histocompatibility Antigens/genetics , Mucosal-Associated Invariant T Cells/metabolism , Neoplasms/metabolism , Ribitol/administration & dosage , Ribitol/analogs & derivatives , Riboflavin/biosynthesis , Riboflavin/chemistry , Riboflavin/pharmacology , Uracil/administration & dosage , Uracil/analogs & derivatives
7.
Cancer Res ; 81(12): 3374-3386, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33837043

ABSTRACT

Screening for sensitizers of cancer cells to TRAIL-mediated apoptosis identified a natural product of the 17ß-hydroxywithanolide (17-BHW) class, physachenolide C (PCC), as a promising hit. In this study, we show that PCC was also able to sensitize melanoma and renal carcinoma cells to apoptosis in response not only to TRAIL, but also to the synthetic polynucleotide poly I:C, a viral mimetic and immune activator, by reducing levels of antiapoptotic proteins cFLIP and Livin. Both death receptor and TLR3 signaling elicited subsequent increased assembly of a proapoptotic ripoptosome signaling complex. Administration of a combination of PCC and poly I:C in human M14 melanoma xenograft and a syngeneic B16 melanoma model provided significant therapeutic benefit as compared with individual agents. In addition, PCC enhanced melanoma cell death in response to activated human T cells in vitro and in vivo in a death ligand-dependent manner. Biochemical mechanism-of-action studies established bromo and extraterminal domain (BET) proteins as major cellular targets of PCC. Thus, by targeting of BET proteins to reduce antiapoptotic proteins and enhance caspase-8-dependent apoptosis of cancer cells, PCC represents a unique agent that can potentially be used in combination with various immunotherapeutic approaches to promote tumor regression and improve outcome. SIGNIFICANCE: These findings demonstrate that PCC selectively sensitizes cancer cells to immune-mediated cell death, potentially improving the efficacy of cancer immunotherapies. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3374/F1.large.jpg.


Subject(s)
Biological Products/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Immunotherapy/methods , Melanoma, Experimental/drug therapy , Poly I-C/pharmacology , Transcription Factors/antagonists & inhibitors , Withanolides/pharmacology , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Cell Proliferation , Drug Therapy, Combination , Female , Humans , Interferon Inducers/pharmacology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Male , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
8.
Nucleic Acids Res ; 49(D1): D871-D876, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33051688

ABSTRACT

With the technology's accessibility and ease of use, CRISPR has been employed widely in many different organisms and experimental settings. As a result, thousands of publications have used CRISPR to make specific genetic perturbations, establishing in itself a resource of validated guide RNA sequences. While numerous computational tools to assist in the design and identification of candidate guide RNAs exist, these are still just at best predictions and generally, researchers inevitably will test multiple sequences for functional activity. Here, we present dbGuide (https://sgrnascorer.cancer.gov/dbguide), a database of functionally validated guide RNA sequences for CRISPR/Cas9-based knockout in human and mouse. Our database not only contains computationally determined candidate guide RNA sequences, but of even greater value, over 4000 sequences which have been functionally validated either through direct amplicon sequencing or manual curation of literature from over 1000 publications. Finally, our established framework will allow for continual addition of newly published and experimentally validated guide RNA sequences for CRISPR/Cas9-based knockout as well as incorporation of sequences from different gene editing systems, additional species and other types of site-specific functionalities such as base editing, gene activation, repression and epigenetic modification.


Subject(s)
Cells/metabolism , Databases, Genetic , Gene Editing , Genome, Human , RNA, Guide, Kinetoplastida/genetics , Animals , Humans , Mice , Reproducibility of Results , User-Computer Interface
9.
Mol Cell Biol ; 40(18)2020 08 28.
Article in English | MEDLINE | ID: mdl-32631902

ABSTRACT

hRpn13/ADRM1 links substrate recruitment with deubiquitination at the proteasome through its proteasome- and ubiquitin-binding Pru domain and DEUBAD domain, which binds and activates deubiquitinating enzyme (DUB) UCHL5/Uch37. Here, we edit the HCT116 colorectal cancer cell line to delete part of the hRpn13 Pru, producing cells that express truncated hRpn13 (trRpn13), which is competent for UCHL5 binding but defective for proteasome interaction. trRpn13 cells demonstrate reduced levels of proteasome-bound ubiquitinated proteins, indicating that the loss of hRpn13 function at proteasomes cannot be fully compensated for by the two other dedicated substrate receptors (hRpn1 and hRpn10). Previous studies indicated that the loss of full-length hRpn13 causes a corresponding reduction of UCHL5. We find UCHL5 levels unaltered in trRpn13 cells, but hRpn11 is elevated in ΔhRpn13 and trRpn13 cells, perhaps from cell stress. Despite the ∼90 DUBs in human cells, including two others in addition to UCHL5 at the proteasome, we found deletion of UCHL5 from HCT116 cells to cause increased levels of ubiquitinated proteins in whole-cell extract and at proteasomes, suggesting that UCHL5 activity cannot be fully assumed by other DUBs. We also report anticancer molecule RA190, which binds covalently to hRpn13 and UCHL5, to require hRpn13 Pru and not UCHL5 for cytotoxicity.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Molecular Chaperones/metabolism , Ubiquitin Thiolesterase/metabolism , Amino Acid Sequence , Binding Sites , Cytoplasm/metabolism , HCT116 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Membrane Glycoproteins/metabolism , Molecular Chaperones/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Ubiquitin/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitinated Proteins/metabolism
10.
J Thorac Oncol ; 15(5): 843-859, 2020 05.
Article in English | MEDLINE | ID: mdl-32004714

ABSTRACT

INTRODUCTION: BRCA1-associated protein-1 (BAP1), a nuclear deubiquitinase thought to be involved in DNA double-strand break repair, is frequently mutated in mesothelioma. Because poly(adenosine diphosphate-ribose) polymerase inhibitors (PARPIs) induce synthetic lethality in BRCA1/2 mutant cancers, we evaluated whether BAP1 inactivating mutations confer sensitivity to PARPIs in mesothelioma and if combination therapy with temozolomide (TMZ) would be beneficial. METHODS: A total of 10 patient-derived mesothelioma cell lines were generated and characterized for BAP1 mutation status, protein expression, nuclear localization, and sensitivity to the PARPIs, olaparib, and talazoparib, alone or in combination with TMZ. BAP1 deubiquitinase (DUB) activity was evaluated by ubiquitin with 7-amido-4-methylcoumarin assay. BAP1 knockout mesothelioma cell lines were generated by CRISPR-Cas9. Because Schlafen 11 (SLFN11) and O6-methylguanine-DNA methyltransferase also drive response to TMZ and PARPIs, we tested their expression and relationship with drug response. RESULTS: BAP1 mutations or copy-number alterations, or both were present in all 10 cell lines. Nonetheless, four cell lines exhibited intact DUB activity and two had nuclear BAP1 localization. Half maximal-inhibitory concentrations of olaparib and talazoparib ranged from 4.8 µM to greater than 50 µM and 0.039 µM to greater than 5 µM, respectively, classifying them into sensitive (two) or resistant (seven) cells, independent of their BAP1 status. Cell lines with BAP1 knockout resulted in the loss of BAP1 DUB activity but did not increase sensitivity to talazoparib. Response to PARPI tended to be associated with high SLFN11 expression, and combination with temozolomide increased sensitivity of cells with low or no MGMT expression. CONCLUSIONS: BAP1 status does not determine sensitivity to PARPIs in patient-derived mesothelioma cell lines. Combination of PARPI with TMZ may be beneficial for patients whose tumors have high SLFN11 and low or no MGMT expression.


Subject(s)
Lung Neoplasms , Mesothelioma , Cell Line, Tumor , Guanine/analogs & derivatives , Humans , Mesothelioma/drug therapy , Mesothelioma/genetics , O(6)-Methylguanine-DNA Methyltransferase , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Temozolomide/pharmacology , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...