Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 30(16): 127358, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32631554

ABSTRACT

Thionation of adatanserin hydrochloride (2) with Lawesson's reagent in toluene/triethylamine afforded novel compound, (3r,5r,7r)-N-(2-(4-(pyrimidin-2-yl)piperazin-1-yl)ethyl)adamantane-1-carbothioamide (thioadatanserin, 3) in 84-90% isolated yield. Thioadatanserin underwent a tandem double alkylation with methyl iodide and benzyl bromide in NaH/THF to produce novel dialkylated products 6 and 7 respectively. The single X-ray crystal structure of 7 was determined to be 1-(2-((E- ((3r,5r,7r)-adamantan-1-yl)benzylthio)methylene)amino)ethyl)-1-benzyl-4- (pyrimidin-2-yl)piperazin-1-ium bromide showing that the piperazine ring adopts a chair-like configuration that is not co-planar with the pyrimidine ring. Thioadatanserin emerged as a dual potent partial agonist with activity against 5-HTR1A (EC50 6.7 nM) and antagonist activity against 5-HTR2A (IC50 62.3 nM) and was selective over 5-HTR2C receptor (IC50 > 3333 nM) in the PathHunter® ß-arrestin assays.


Subject(s)
Anxiety Disorders/drug therapy , Depression/drug therapy , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Alkylation , Dose-Response Relationship, Drug , Humans , Molecular Structure , Serotonin 5-HT1 Receptor Agonists/chemical synthesis , Serotonin 5-HT1 Receptor Agonists/chemistry , Serotonin 5-HT2 Receptor Antagonists/chemical synthesis , Serotonin 5-HT2 Receptor Antagonists/chemistry , Structure-Activity Relationship
2.
Transl Res ; 215: 31-40, 2020 01.
Article in English | MEDLINE | ID: mdl-31520587

ABSTRACT

Precision medicine has generated diagnoses for many patients with challenging undiagnosed disorders. Some individuals remain without a diagnosis despite comprehensive testing, and this impedes their treatment. This report addresses the role of personalized medicine in identifying effective therapy for an undiagnosed disease. A 22-year-old woman presented with chronic severe recurrent trismus, facial pain, progressive multicentric inflammatory and fibrotic masses, and high C-reactive protein. Sites of disease included the pterygomaxillary region, masseter muscles, mandible, lung, pericardium, intrabdominal cavity, and retroperitoneum. A diagnosis was not established after an extensive assessment, including multiple biopsies. The patient was subsequently evaluated under the Undiagnosed Diseases Program at the National Institutes of Health. Large scale genotyping, proteomic studies, and in vitro and gene expression analyses of fibroblasts obtained from a major disease locus were performed. Germline genetic testing did not identify strong candidate genes; proteomic studies of the patient's serum and bronchoalveolar lavage fluid and gene expression analyses of her cells were consistent with dysregulation of the tumor necrosis factor-alpha pathway. The patient's cultured fibroblasts were incubated with selected drugs, and cell proliferation was inhibited by hydroxychloroquine. Treatment of the patient with hydroxychloroquine conferred prolonged beneficial clinical effects, including stabilization of trismus and reduction of corticosteroid dose, C-reactive protein, and size of masses. This case represents an example of precision medicine applied to discover effective treatments for individuals with enigmatic undiagnosed disorders.


Subject(s)
Disease Progression , Inflammation/diagnosis , Inflammation/therapy , Interdisciplinary Research , Precision Medicine , Undiagnosed Diseases/therapy , Adolescent , Bronchoalveolar Lavage Fluid , Female , Fibroblasts/pathology , Fibrosis , Gene Expression Regulation , Humans , Hydroxychloroquine/therapeutic use , Inflammation/diagnostic imaging , Inflammation/genetics , Magnetic Resonance Imaging , Tomography, X-Ray Computed , Treatment Outcome , Undiagnosed Diseases/blood , Undiagnosed Diseases/diagnostic imaging , Undiagnosed Diseases/genetics , Young Adult
3.
Ecotoxicol Environ Saf ; 142: 544-554, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28482323

ABSTRACT

Bioassays of planarian neoplasia highlight the potential of these organisms as useful standards to assess whether environmental toxins such as cadmium promote tumorigenesis. These studies complement other investigations into the exceptional healing and regeneration of planarians - processes that are driven by a population of active stem cells, or neoblasts, which are likely transformed during planarian tumor growth. Our goal was to determine if planarian tumorigenesis assays are amenable to mechanistic studies of cadmium carcinogenesis. To that end we demonstrate, by examining both counts of cell populations by size, and instances of mitosis, that the activity of the stem cell population can be monitored. We also provide evidence that specific biomodulators can affect the potential of planarian neoplastic growth, in that an inhibitor of metalloproteinases effectively blocked the development of the lesions. From these results, we infer that neoblast activity does respond to cadmium-induced tumor growth, and that metalloproteinases are required for the progression of cancer in the planarian.


Subject(s)
Cadmium/toxicity , Carcinogens/toxicity , Cell Transformation, Neoplastic/chemically induced , Models, Biological , Planarians/drug effects , Animals , Benchmarking , Carcinogenicity Tests , Cell Transformation, Neoplastic/ultrastructure , Cocarcinogenesis , Mitosis/drug effects , Planarians/cytology , Regeneration/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...