Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(10): 15301-15315, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157634

ABSTRACT

We demonstrate interleaved sampling by multiplexing conical subshells within the tomosynthesis and raster scanning a phantom through a 150 kV shell X-ray beam. Each view comprises pixels sampled on a regular 1 mm grid, which is then upscaled by padding with null pixels before tomosynthesis. We show that upscaled views comprising 1% sample pixels and 99% null pixels increase the contrast transfer function (CTF) computed from constructed optical sections from approximately 0.6 line pairs/mm to 3 line pairs/mm. The driver of our method is to complement work concerning the application of conical shell beams to the measurement of diffracted photons for materials identification. Our approach is relevant to time-critical, and dose-sensitive analytical scanning applications in security screening, process control and medical imaging.

2.
Acta Crystallogr C Struct Chem ; 78(Pt 5): 271-279, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35510432

ABSTRACT

Hydroxyapatite (HA) is a complex material, which is often nanocrystalline when found within a biological setting. This work has directly compared the structural characteristics derived from data collected using a conventional laboratory-based X-ray diffractometer with those collected from a dedicated pair distribution function (PDF) beamline at Diamond Light Source. In particular, the application of PDF analysis methods to carbonated HA is evaluated. 20 synthetic samples were measured using both X-ray diffraction (XRD) and PDFs. Both Rietveld refinement (of laboratory XRD data) and real-space refinement (of PDF data) were used to analyse all samples. The results of Rietveld and real-space refinements were compared to evaluate their application to crystalline and nanocrystalline hydroxyapatite. Significant relationships were observed between real-space refinement parameters and increasing carbonate substitution. Understanding the local order of synthetic hydroxyapatite can benefit several fields, including both biomedical and clinical settings.


Subject(s)
Carbonates , Durapatite , Carbonates/chemistry , Crystallography, X-Ray , Durapatite/chemistry , Hydrogen Bonding , X-Ray Diffraction
3.
Opt Express ; 27(15): 21092-21101, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31510192

ABSTRACT

We combine diffraction and absorption tomography by raster scanning samples through a hollow cone of pseudo monochromatic X-rays with a mean energy of 58.4 keV. A single image intensifier takes 90x90 (x,y) snapshots during the scan. We demonstrate a proof-of-principle of our technique using a heterogeneous three-dimensional (x,y,z) phantom (90x90x170 mm3) comprised of different material phases, i.e., copper and sodium chlorate. Each snapshot enables the simultaneous measurement of absorption contrast and diffracted flux. The axial resolution was ~1 mm along the (x,y) orthogonal scan directions and ~7 mm along the z-axis. The tomosynthesis of diffracted flux measurements enable the calculation of d-spacing values with ~0.1 Å full width at half maximum (FWHM) at ~2 Å. Thus the identified materials may be color-coded in the absorption optical sections. Characterization of specific material phases is of particular interest in security screening for the identification of narcotics and a wide range of homemade explosives concealed within complex "everyday objects." Other potential application areas include process control and biological imaging.

4.
Opt Express ; 27(14): 19834-19841, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31503738

ABSTRACT

We introduce a new high-energy X-ray diffraction tomography technique for volumetric materials characterization. In this method, a conical shell beam is raster scanned through the samples. A central aperture optically couples the diffracted flux from the samples onto a pixelated energy-resolving detector. Snapshot measurements taken during the scan enable the construction of depth-resolved dark-field section images. The calculation of d-spacing values enables the mapping of material phase in a volumetric image. We demonstrate our technique using five ~15 mm thick, axially separated samples placed within a polymer tray of the type used routinely in airport security stations. Our method has broad analytical utility due to scalability in both scan size and X-ray energy. Additional application areas include medical diagnostics, materials science, and process control.

5.
Opt Express ; 25(18): 21321-21328, 2017 Sep 04.
Article in English | MEDLINE | ID: mdl-29041431

ABSTRACT

We demonstrate a novel imaging architecture to collect range encoded diffraction patterns from overlapping samples in a single conical shell projection. The patterns were measured in the dark area encompassed by the beam via a centrally positioned aperture optically coupled to a pixelated energy-resolving detector. We show that a single exposure measurement of 0.3 mAs enables d-spacing values to be calculated. The axial positions of the samples were not required and the resultant measurements were robust in the presence of crystallographic textures. Our results demonstrate rapid volumetric materials characterization and the potential for a direct imaging method, which is of great relevance to applications in medicine, non-destructive testing and security screening.

6.
Opt Express ; 24(25): 29048-29059, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27958570

ABSTRACT

We demonstrate depth-resolved absorption imaging by scanning an object through a conical shell of X-rays. We measure ring shaped projections and apply tomosynthesis to extract optical sections at different axial focal plane positions. Three-dimensional objects have been imaged to validate our theoretical treatment. The novel principle of our method is scalable with respect to both scan size and X-ray energy. A driver for this work is to complement previously reported methods concerning the measurement of diffracted X-rays for structural analysis. The prospect of employing conical shell beams to combine both absorption and diffraction modalities would provide enhanced analytical utility and has many potential applications in security screening, process control and diagnostic imaging.

7.
Bone ; 93: 55-63, 2016 12.
Article in English | MEDLINE | ID: mdl-27622884

ABSTRACT

Osteoporosis is a prevalent bone condition, characterised by low bone mass and increased fracture risk. Currently, the gold standard for identifying osteoporosis and increased fracture risk is through quantification of bone mineral density (BMD) using dual energy X-ray absorption (DEXA). However, the risk of osteoporotic fracture is determined collectively by bone mass, architecture and physicochemistry of the mineral composite building blocks. Thus DEXA scans alone inevitably fail to fully discriminate individuals who will suffer a fragility fracture. This study examines trabecular bone at both ultrastructure and microarchitectural levels to provide a detailed material view of bone, and therefore provides a more comprehensive explanation of osteoporotic fracture risk. Physicochemical characterisation obtained through X-ray diffraction and infrared analysis indicated significant differences in apatite crystal chemistry and nanostructure between fracture and non-fracture groups. Further, this study, through considering the potential correlations between the chemical biomarkers and microarchitectural properties of trabecular bone, has investigated the relationship between bone mechanical properties (e.g. fragility) and physicochemical material features.


Subject(s)
Biomarkers/metabolism , Osteoporotic Fractures/metabolism , Osteoporotic Fractures/pathology , Adult , Age Factors , Aged , Aged, 80 and over , Bone and Bones/pathology , Female , Humans , Linear Models , Middle Aged , Risk Factors , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Young Adult
8.
Sci Rep ; 6: 29011, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27363947

ABSTRACT

Osteoporotic fractures present a significant social and economic burden, which is set to rise commensurately with the aging population. Greater understanding of the physicochemical differences between osteoporotic and normal conditions will facilitate the development of diagnostic technologies with increased performance and treatments with increased efficacy. Using coherent X-ray scattering we have evaluated a population of 108 ex vivo human bone samples comprised of non-fracture and fracture groups. Principal component fed linear discriminant analysis was used to develop a classification model to discern each condition resulting in a sensitivity and specificity of 93% and 91%, respectively. Evaluating the coherent X-ray scatter differences from each condition supports the hypothesis that a causal physicochemical change has occurred in the fracture group. This work is a critical step along the path towards developing an in vivo diagnostic tool for fracture risk prediction.


Subject(s)
Osteoporotic Fractures/classification , X-Ray Diffraction , Aged , Aged, 80 and over , Bone and Bones/physiopathology , Discriminant Analysis , Female , Humans , Male , Osteoporotic Fractures/diagnostic imaging
9.
Phys Med Biol ; 60(15): 5803-12, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26159892

ABSTRACT

There is a compelling need for accurate, low cost diagnostics to identify osteo-tissues that are associated with a high risk of fracture within an individual. To satisfy this requirement the quantification of bone characteristics such as 'bone quality' need to exceed that provided currently by densitometry. Bone mineral chemistry and microstructure can be determined from coherent x-ray scatter signatures of bone specimens. Therefore, if these signatures can be measured, in vivo, to an appropriate accuracy it should be possible by extending terms within a fracture risk model to improve fracture risk prediction.In this preliminary study we present an examination of a new x-ray diffraction technique that employs hollow annular and semi-annular beams to measure aspects of 'bone quality'. We present diffractograms obtained with our approach from ex vivo bone specimens at Mo Kα and W Kα energies. Primary data is parameterized to provide estimates of bone characteristics and to indicate the precision with which these can be determined.


Subject(s)
Bone Density/physiology , Bone and Bones/diagnostic imaging , Femur Neck/diagnostic imaging , X-Ray Diffraction/instrumentation , X-Ray Diffraction/methods , Animals , Calcification, Physiologic , Cattle , Densitometry , Radiography , X-Rays
10.
Opt Express ; 23(10): 13443-54, 2015 May 18.
Article in English | MEDLINE | ID: mdl-26074592

ABSTRACT

We demonstrate material phase identification by measuring polychromatic diffraction spots from samples at least 20 mm in diameter and up to 10 mm thick with an energy resolving point detector. Within our method an annular X-ray beam in the form of a conical shell is incident with its symmetry axis normal to an extended polycrystalline sample. The detector is configured to receive diffracted flux transmitted through the sample and is positioned on the symmetry axis of the annular beam. We present the experiment data from a range of different materials and demonstrate the acquisition of useful data with sub-second collection times of 0.5 s; equating to 0.15 mAs. Our technique should be highly relevant in fields that demand rapid analytical methods such as medicine, security screening and non-destructive testing.

11.
Bone Rep ; 3: 67-75, 2015 Dec.
Article in English | MEDLINE | ID: mdl-28377969

ABSTRACT

Osteoporosis is clinically assessed from bone mineral density measurements using dual energy X-ray absorption (DXA). However, these measurements do not always provide an accurate fracture prediction, arguably because DXA does not grapple with 'bone quality', which is a combined result of microarchitecture, texture, bone tissue properties, past loading history, material chemistry and bone physiology in reaction to disease. Studies addressing bone quality are comparatively few if one considers the potential importance of this factor. They suffer due to low number of human osteoporotic specimens, use of animal proxies and/or the lack of differentiation between confounding parameters such as gender and state of diseased bone. The present study considers bone samples donated from patients (n = 37) who suffered a femoral neck fracture and in this very well defined cohort we have produced in previous work fracture toughness measurements (FT) which quantify its ability to resist crack growth which reflects directly the structural integrity of the cancellous bone tissue. We investigated correlations between BV/TV and other microarchitectural parameters; we examined effects that may suggest differences in bone remodelling between males and females and compared the relationships with the FT properties. The data crucially has shown that TbTh, TbSp, SMI and TbN may provide a proxy or surrogate for BV/TV. Correlations between FT critical stress intensity values and microarchitecture parameters (BV/TV, BS/TV, TbN, BS/BV and SMI) for osteoporotic cancellous tissue were observed and are for the first time reported in this study. Overall, this study has not only highlighted that the fracture model based upon BMD could potentially be improved with inclusion of other microarchitecture parameters, but has also given us clear clues as to which of them are more influential in this role.

SELECTION OF CITATIONS
SEARCH DETAIL
...