Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5028, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866748

ABSTRACT

Cholesterol-dependent cytolysins (CDCs) comprise a large family of pore-forming toxins produced by Gram-positive bacteria, which are used to attack eukaryotic cells. Here, we functionally characterize a family of 2-component CDC-like (CDCL) toxins produced by the Gram-negative Bacteroidota that form pores by a mechanism only described for the mammalian complement membrane attack complex (MAC). We further show that the Bacteroides CDCLs are not eukaryotic cell toxins like the CDCs, but instead bind to and are proteolytically activated on the surface of closely related species, resulting in pore formation and cell death. The CDCL-producing Bacteroides is protected from the effects of its own CDCL by the presence of a surface lipoprotein that blocks CDCL pore formation. These studies suggest a prevalent mode of bacterial antagonism by a family of two-component CDCLs that function like mammalian MAC and that are wide-spread in the gut microbiota of diverse human populations.


Subject(s)
Complement Membrane Attack Complex , Humans , Complement Membrane Attack Complex/metabolism , Bacteroides/genetics , Bacteroides/metabolism , Bacterial Toxins/metabolism , Bacterial Toxins/genetics , Cytotoxins/metabolism , Gastrointestinal Microbiome , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Complement System Proteins/metabolism , Complement System Proteins/immunology , Animals , Eukaryotic Cells/metabolism
2.
Nat Commun ; 13(1): 4258, 2022 07 23.
Article in English | MEDLINE | ID: mdl-35871068

ABSTRACT

Phocaeicola vulgatus is one of the most abundant and ubiquitous bacterial species of the human gut microbiota, yet a comprehensive analysis of antibacterial toxin production by members of this species has not been reported. Here, we identify and characterize a previously undescribed antibacterial protein. This toxin, designated BcpT, is encoded on a small mobile plasmid that is largely confined to strains of the closely related species Phocaeicola vulgatus and Phocaeicola dorei. BcpT is unusual in that it requires cleavage at two distinct sites for activation, and we identify bacterial proteases that perform this activation. We further identify BcpT's receptor as the Lipid A-core glycan, allowing BcpT to target species of other Bacteroidales families. Exposure of cells to BcpT induces a response involving an unusual sigma/anti-sigma factor pair that is likely triggered by cell envelope stress, resulting in the expression of genes that partially protect cells from multiple antimicrobial toxins.


Subject(s)
Anti-Infective Agents , Bacterial Proteins , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/metabolism , Bacteria/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteroides , Bacteroidetes/genetics , Humans , Plasmids/genetics
3.
Methods Enzymol ; 649: 47-70, 2021.
Article in English | MEDLINE | ID: mdl-33712197

ABSTRACT

Pore-forming proteins are found in prokaryotes, vertebrates, and invertebrates, and when involved in pathogenic processes they are classified as pore-forming toxins (PFTs). The use of gene engineering methods in combination with the information provided by the high-resolution crystal structures of the PFTs have allowed investigators to gain a deep understanding of their pore-forming mechanisms. In this chapter, we discuss how protein engineering has helped us and others to reveal the molecular mechanisms of pore formation by prokaryotic PFTs with an emphasis on our experiences with the cholesterol-dependent cytolysins (CDCs).


Subject(s)
Bacterial Toxins , Animals , Bacterial Toxins/genetics , Cell Membrane , Cholesterol , Protein Engineering
4.
mBio ; 11(5)2020 09 29.
Article in English | MEDLINE | ID: mdl-32994330

ABSTRACT

The cholesterol-dependent cytolysins (CDCs) are bacterial, ß-barrel, pore-forming toxins. A central enigma of the pore-forming mechanism is how completion of the prepore is sensed to initiate its conversion to the pore. We identified a motif that is conserved between the CDCs and a diverse family of nearly 300 uncharacterized proteins present in over 220 species that span at least 10 bacterial and 2 eukaryotic phyla. Except for this motif, these proteins exhibit little similarity to the CDCs at the primary structure level. Studies herein show this motif is a critical component of the sensor that initiates the prepore-to-pore transition in the CDCs. We further show by crystallography, single particle analysis, and biochemical studies of one of these CDC-like (CDCL) proteins from Elizabethkingia anophelis, a commensal of the malarial mosquito midgut, that a high degree of structural similarity exists between the CDC and CDCL monomer structures and both form large oligomeric pore complexes. Furthermore, the conserved motif in the E. anophelis CDCL crystal structure occupies a nearly identical position and makes similar contacts to those observed in the structure of the archetype CDC, perfringolysin O (PFO). This suggests a common function in the CDCs and CDCLs and may explain why only this motif is conserved in the CDCLs. Hence, these studies identify a critical component of the sensor involved in initiating the prepore-to-pore transition in the CDCs, which is conserved in a large and diverse group of distant relatives of the CDCs.IMPORTANCE The cholesterol-dependent cytolysins' pore-forming mechanism relies on the ability to sense the completion of the oligomeric prepore structure and initiate the insertion of the ß-barrel pore from the assembled prepore structure. These studies show that a conserved motif is an important component of the sensor that triggers the prepore-to-pore transition and that it is conserved in a large family of previously unidentified CDC-like proteins, the genes for which are present in a vast array of microbial species that span most terrestrial environments, as well as most animal and human microbiomes. These studies establish the foundation for future investigations that will probe the contribution of this large family of CDC-like proteins to microbial survival and human disease.


Subject(s)
Amino Acid Motifs , Cholesterol/metabolism , Cytotoxins/chemistry , Flavobacteriaceae/chemistry , Animals , Cell Membrane/metabolism , Crystallography, X-Ray , Culicidae/microbiology , Cytotoxins/genetics , Flavobacteriaceae/genetics , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...