Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975874

ABSTRACT

KRAS inhibitors demonstrate clinical efficacy in pancreatic ductal adenocarcinoma (PDAC); however, resistance is common. Among patients with KRASG12C-mutant PDAC treated with adagrasib or sotorasib, mutations in PIK3CA and KRAS, and amplifications of KRASG12C, MYC, MET, EGFR, and CDK6 emerged at acquired resistance. In PDAC cell lines and organoid models treated with the KRASG12D inhibitor MRTX1133, epithelial-to-mesenchymal transition and PI3K-AKT-mTOR signaling associate with resistance to therapy. MRTX1133 treatment of the KrasLSL-G12D/+;Trp53LSL-R172H/+;p48-Cre (KPC) mouse model yielded deep tumor regressions, but drug resistance ultimately emerged, accompanied by amplifications of Kras, Yap1, Myc, and Cdk6/Abcb1a/b, and co-evolution of drug-resistant transcriptional programs. Moreover, in KPC and PDX models, mesenchymal and basal-like cell states displayed increased response to KRAS inhibition compared to the classical state. Combination treatment with KRASG12D inhibition and chemotherapy significantly improved tumor control in PDAC mouse models. Collectively, these data elucidate co-evolving resistance mechanisms to KRAS inhibition and support multiple combination therapy strategies.

2.
medRxiv ; 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32587994

ABSTRACT

Post-infectious anosmias typically follow death of olfactory sensory neurons (OSNs) with a months-long recovery phase associated with parosmias. While profound anosmia is the leading symptom associated with COVID-19 infection, many patients regain olfactory function within days to weeks without distortions. Here, we demonstrate that sterile induction of anti-viral type I interferon signaling in the mouse olfactory epithelium is associated with diminished odor discrimination and reduced odor-evoked local field potentials. RNA levels of all class I, class II, and TAAR odorant receptors are markedly reduced in OSNs in a non-cell autonomous manner. We find that people infected with COVID-19 rate odors with lower intensities and have odor discrimination deficits relative to people that tested negative for COVID-19. Taken together, we propose that inflammatory-mediated loss of odorant receptor expression with preserved circuit integrity accounts for the profound anosmia and rapid recovery of olfactory function without parosmias caused by COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...