Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Microbiome ; 4(1): 7, 2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35000619

ABSTRACT

BACKGROUND: Enteritis is a common cause of morbidity and mortality in lorikeets that can be challenging to diagnose and treat. In this study, we examine gut microbiota in two lorikeet flocks with enteritis (Columbus Zoo and Aquarium-CZA; Denver Zoo-DZ). Since 2012, the CZA flock has experienced repeated outbreaks of enteritis despite extensive diet, husbandry, and clinical modifications. In 2018, both CZA and DZ observed a spike in enteritis. Recent research has revealed that the gut microbiota can influence susceptibility to enteropathogens. We hypothesized that a dysbiosis, or alteration in the gut microbial community, was making some lorikeets more susceptible to enteritis, and our goal was to characterize this dysbiosis and determine the features that predicted susceptibility. RESULTS: We employed 16S rRNA sequencing to characterize the cloacal microbiota in lorikeets (CZA n = 67, DZ n = 24) over time. We compared the microbiota of healthy lorikeets, to lorikeets with enteritis, and lorikeets susceptible to enteritis, with "susceptible" being defined as healthy birds that subsequently developed enteritis. Based on sequencing data, culture, and toxin gene detection in intestinal contents, we identified Clostridium perfringens type A (CZA and DZ) and C. colinum (CZA only) at increased relative abundances in birds with enteritis. Histopathology and immunohistochemistry further identified the presence of gram-positive bacilli and C. perfringens, respectively, in the necrotizing intestinal lesions. Finally, using Random Forests and LASSO models, we identified several features (young age and the presence of Rhodococcus fascians and Pseudomonas umsongensis) associated with susceptibility to clostridial enteritis. CONCLUSIONS: We identified C. perfringens type A and C. colinum associated with lorikeet necrohemorrhagic enteritis at CZA and DZ. Susceptibility testing of isolates lead to an updated clinical treatment plan which ultimately resolved the outbreaks at both institutions. This work provides a foundation for understanding gut microbiota features that are permissive to clostridial colonization and host factors (e.g. age, prior infection) that shape responses to infection.

2.
PLoS One ; 16(7): e0253989, 2021.
Article in English | MEDLINE | ID: mdl-34242284

ABSTRACT

The urinary microbiota is the collection of microbes present in urine that may play a role in host health. Studies of urine microbiota have traditionally relied upon culturing methods aimed at identifying pathogens. However, recent culture-free sequencing studies of the urine microbiota have determined that a diverse array of microbes is present in health and disease. To study these microbes and their potential role in diseases like bladder cancer or interstitial cystitis, consistent extraction and detection of bacterial DNA from urine is critical. However, urine is a low biomass substrate, requiring sensitive methods to capture DNA and making the risk of contamination high. To address this challenge, we collected urine samples from ten healthy dogs and extracted DNA from each sample using five different commercially available extraction methods. Extraction methods were compared based on total and bacterial DNA concentrations and bacterial community composition and diversity assessed through 16S rRNA gene sequencing. Significant differences in the urinary microbiota were observed by dog and sex but not extraction method. The Bacteremia Kit yielded the highest total DNA concentrations (Kruskal-Wallis, p = 0.165, not significant) and the highest bacterial DNA concentrations (Kruskal-Wallis, p = 0.044). Bacteremia also extracted bacterial DNA from the greatest number of samples. Taken together, these results suggest that the Bacteremia kit is an effective option for studying the urine microbiota. This work lays the foundation to study the urine microbiome in a wide range of urogenital diseases in dogs and other species.


Subject(s)
Dogs/microbiology , Dogs/urine , Microbiota , Urinalysis/methods , Urine/microbiology , Animals , Bacteria/classification , Bacteria/isolation & purification , Biodiversity , DNA, Bacterial/urine , Female , Male , Phylogeny
3.
Sci Rep ; 11(1): 13218, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168170

ABSTRACT

Chronic wasting disease (CWD) is a fatal, contagious, neurodegenerative prion disease affecting both free-ranging and captive cervid species. CWD is spread via direct or indirect contact or oral ingestion of prions. In the gastrointestinal tract, prions enter the body through microfold cells (M-cells), and the abundance of these cells can be influenced by the gut microbiota. To explore potential links between the gut microbiota and CWD, we collected fecal samples from farmed and free-ranging white-tailed deer (Odocoileus virginianus) around the Midwest, USA. Farmed deer originated from farms that were depopulated due to CWD. Free-ranging deer were sampled during annual deer harvests. All farmed deer were tested for CWD via ELISA and IHC, and we used 16S rRNA gene sequencing to characterize the gut microbiota. We report significant differences in gut microbiota by provenance (Farm 1, Farm 2, Free-ranging), sex, and CWD status. CWD-positive deer from Farm 1 and 2 had increased abundances of Akkermansia, Lachnospireacea UCG-010, and RF39 taxa. Overall, differences by provenance and sex appear to be driven by diet, while differences by CWD status may be linked to CWD pathogenesis.


Subject(s)
Deer/microbiology , Gastrointestinal Microbiome/genetics , Wasting Disease, Chronic/microbiology , Animals , Enzyme-Linked Immunosorbent Assay/methods , Female , Male , Prions/genetics , RNA, Ribosomal, 16S/genetics
4.
Ecotoxicol Environ Saf ; 215: 112126, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33721663

ABSTRACT

Freshwater harmful algal blooms (HABs) are a major environmental health problem worldwide. HABs are caused by a predominance of cyanobacteria, some of which produce potent toxins. The most ubiquitous cyanotoxin is microcystin (MC) and the congener MC-LR is the most studied due to its toxicity. Short-term exposure to toxins can cause gut microbiome disturbances, but this has not been well described with MC-LR exposure. This study investigated the gut microbial communities of mice from a prior study, which identified significant liver toxicity from ingestion of MC-LR daily for 8 days. CD-1 mice were divided into three dosage groups: control, low exposure (sub-lethal MC-LR concentration), and high exposure (near-lethal MC-LR concentration). Fecal samples were analyzed using 16S rRNA sequencing. Results revealed that at population level, there were no significant shifts in bacterial diversity or the microbial community structure over the exposure period. However, there were significant differences between male and female mice. Predictive functional gene analysis indicated that several metabolic pathways were significantly different in the high dose group before exposure and following 7 doses of MC-LR, as well as between the control and high dose groups on Day 8. Significant differentially abundant taxa were also identified contributing to these pathways. Several pathways, including superpathway of N-acetylneuraminate degradation, were related to liver and gut inflammation. The outcome of this study suggests a need for in-depth investigation of metabolic activity and other functions in the gut in future studies, as well as potential consideration of the role of sex in MC-LR toxicity.


Subject(s)
Gastrointestinal Microbiome/drug effects , Marine Toxins/toxicity , Microcystins/toxicity , Animals , Cyanobacteria/metabolism , Feces/microbiology , Female , Harmful Algal Bloom , Inflammation/metabolism , Liver/drug effects , Male , Metabolic Networks and Pathways , Mice , Microbiota , RNA, Ribosomal, 16S/genetics
5.
Sci Rep ; 10(1): 20288, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33219314

ABSTRACT

Maternal stress during pregnancy is widespread and is associated with poor offspring outcomes, including long-term mental health issues. Prenatal stress-induced fetal neuroinflammation is thought to underlie aberrant neurodevelopment and to derive from a disruption in intrauterine immune homeostasis, though the exact origins are incompletely defined. We aimed to identify divergent immune and microbial metagenome profiles of stressed gestating mice that may trigger detrimental inflammatory signaling at the maternal-fetal interface. In response to stress, maternal glucocorticoid circuit activation corresponded with indicators of systemic immunosuppression. At the maternal-fetal interface, density of placental mononuclear leukocytes decreased with stress, yet maternal whole blood leukocyte analysis indicated monocytosis and classical M1 phenotypic shifts. Genome-resolved microbial metagenomic analyses revealed reductions in genes, microbial strains, and metabolic pathways in stressed dams that are primarily associated with pro-inflammatory function. In particular, disrupted Parasutterella excrementihominis appears to be integral to inflammatory and metabolic dysregulation during prenatal stress. Overall, these perturbations in maternal immunological and microbial regulation during pregnancy may displace immune equilibrium at the maternal-fetal interface. Notably, the absence of and reduction in overt maternal inflammation during stress indicates that the signaling patterns driving fetal outcomes in this context are more nuanced and complex than originally anticipated.


Subject(s)
Brain/embryology , Fetal Development/immunology , Gastrointestinal Microbiome/immunology , Pregnancy Complications/immunology , Stress, Psychological/immunology , Animals , Brain/immunology , Burkholderiales/genetics , Burkholderiales/immunology , Disease Models, Animal , Female , Gastrointestinal Microbiome/genetics , Glucocorticoids/metabolism , Humans , Leukocytes, Mononuclear/immunology , Maternal-Fetal Exchange/immunology , Mental Health , Metagenomics , Mice , Neuroimmunomodulation/immunology , Placenta/cytology , Placenta/immunology , Pregnancy , Pregnancy Complications/metabolism , Pregnancy Complications/psychology , Prenatal Exposure Delayed Effects/immunology , Stress, Psychological/metabolism , Stress, Psychological/psychology
6.
ISME J ; 13(11): 2690-2700, 2019 11.
Article in English | MEDLINE | ID: mdl-31243331

ABSTRACT

In the last decade, extensive application of hydraulic fracturing technologies to unconventional low-permeability hydrocarbon-rich formations has significantly increased natural-gas production in the United States and abroad. The injection of surface-sourced fluids to generate fractures in the deep subsurface introduces microbial cells and substrates to low-permeability rock. A subset of injected organic additives has been investigated for their ability to support biological growth in shale microbial community members; however, to date, little is known on how complex xenobiotic organic compounds undergo biotransformations in this deep rock ecosystem. Here, high-resolution chemical, metagenomic, and proteomic analyses reveal that widely-used surfactants are degraded by the shale-associated taxa Halanaerobium, both in situ and under laboratory conditions. These halotolerant bacteria exhibit surfactant substrate specificities, preferring polymeric propoxylated glycols (PPGs) and longer alkyl polyethoxylates (AEOs) over polyethylene glycols (PEGs) and shorter AEOs. Enzymatic transformation occurs through repeated terminal-end polyglycol chain shortening during co-metabolic growth through the methylglyoxal bypass. This work provides the first evidence that shale microorganisms can transform xenobiotic surfactants in fracture fluid formulations, potentially affecting the efficiency of hydrocarbon recovery, and demonstrating an important association between injected substrates and microbial growth in an engineered subsurface ecosystem.


Subject(s)
Bacteria/classification , Glycols/metabolism , Hydraulic Fracking , Natural Gas/analysis , Oil and Gas Fields/microbiology , Surface-Active Agents/metabolism , Bacteria/genetics , Biodegradation, Environmental , Microbiota , Minerals/chemistry , Ohio , Proteomics , Surface-Active Agents/analysis , Wastewater/microbiology
7.
Environ Sci Process Impacts ; 21(2): 256-268, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30318550

ABSTRACT

Polyethylene glycols (PEGs) and polypropylene glycols (PPGs) are frequently used in hydraulic fracturing fluids and have been detected in water returning to the surface from hydraulically fractured oil and gas wells in multiple basins. We identified degradation pathways and kinetics for PEGs and PPGs under conditions simulating a spill of produced water to shallow groundwater. Sediment-groundwater microcosm experiments were conducted using four produced water samples from two Denver-Julesburg Basin wells at early and late production. High-resolution mass spectrometry was used to identify the formation of mono- and di-carboxylated PEGs and mono-carboxylated PPGs, which are products of PEG and PPG biodegradation, respectively. Under oxic conditions, first-order half-lives were more rapid for PEGs (<0.4-1.1 d) compared to PPGs (2.5-14 d). PEG and PPG degradation corresponded to increased relative abundance of primary alcohol dehydrogenase genes predicted from metagenome analysis of the 16S rRNA gene. Further degradation was not observed under anoxic conditions. Our results provide insight into the differences between the degradation rates and pathways of PEGs and PPGs, which may be utilized to better characterize shallow groundwater contamination following a release of produced water.


Subject(s)
Biodegradation, Environmental , Groundwater/chemistry , Groundwater/microbiology , Polyethylene Glycols/chemistry , Polymers/chemistry , Propylene Glycols/chemistry , Water Microbiology , Water Pollutants, Chemical/chemistry , Hydraulic Fracking , Metagenome , Oil and Gas Fields , RNA, Ribosomal, 16S/genetics , Wastewater/chemistry
8.
Front Microbiol ; 9: 2646, 2018.
Article in English | MEDLINE | ID: mdl-30498478

ABSTRACT

Hydraulic fracturing is the prevailing method for enhancing recovery of hydrocarbon resources from unconventional shale formations, yet little is understood regarding the microbial impact on biogeochemical cycling in natural-gas wells. Although the metabolisms of certain fermentative bacteria and methanogenic archaea that dominate in later produced fluids have been well studied, few details have been reported on microorganisms prevelant during the early flowback period, when oxygen and other surface-derived oxyanions and nutrients become depleted. Here, we report the isolation, genomic and phenotypic characterization of Marinobacter and Arcobacter bacterial species from natural-gas wells in the Utica-Point Pleasant and Marcellus Formations coupled to supporting geochemical and metagenomic analyses of produced fluid samples. These unconventional hydrocarbon system-derived Marinobacter sp. are capable of utilizing a diversity of organic carbon sources including aliphatic and aromatic hydrocarbons, amino acids, and carboxylic acids. Marinobacter and Arcobacter can metabolize organic nitrogen sources and have the capacity for denitrification and dissimilatory nitrate reduction to ammonia (DNRA) respectively; with DNRA and ammonification processes partially explaining high concentrations of ammonia measured in produced fluids. Arcobacter is capable of chemosynthetic sulfur oxidation, which could fuel metabolic processes for other heterotrophic, fermentative, or sulfate-reducing community members. Our analysis revealed mechanisms for growth of these taxa across a broad range of salinities (up to 15% salt), which explains their enrichment during early natural-gas production. These results demonstrate the prevalence of Marinobacter and Arcobacter during a key maturation phase of hydraulically fractured natural-gas wells, and highlight the significant role these genera play in biogeochemical cycling for this economically important energy system.

9.
Environ Sci Technol ; 51(23): 13985-13994, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29110455

ABSTRACT

Hydraulic fracturing fluids are injected into shales to extend fracture networks that enhance oil and natural gas production from unconventional reservoirs. Here we evaluated the biodegradability of three widely used nonionic polyglycol ether surfactants (alkyl ethoxylates (AEOs), nonylphenol ethoxylates (NPEOs), and polypropylene glycols (PPGs)) that function as weatherizers, emulsifiers, wetting agents, and corrosion inhibitors in injected fluids. Under anaerobic conditions, we observed complete removal of AEOs and NPEOs from solution within 3 weeks regardless of whether surfactants were part of a chemical mixture or amended as individual additives. Microbial enzymatic chain shortening was responsible for a shift in ethoxymer molecular weight distributions and the accumulation of the metabolite acetate. PPGs bioattenuated the slowest, producing sizable concentrations of acetone, an isomer of propionaldehyde. Surfactant chain shortening was coupled to an increased abundance of the diol dehydratase gene cluster (pduCDE) in Firmicutes metagenomes predicted from the 16S rRNA gene. The pduCDE enzymes are responsible for cleaving ethoxylate chain units into aldehydes before their fermentation into alcohols and carboxylic acids. These data provide new mechanistic insight into the environmental fate of hydraulic fracturing surfactants after accidental release through chain shortening and biotransformation, emphasizing the importance of compound structure disclosure for predicting biodegradation products.


Subject(s)
Hydraulic Fracking , Surface-Active Agents , Biodegradation, Environmental , Biotransformation , RNA, Ribosomal, 16S , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...